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Ask the Cognitive Scientist
Do Manipulatives Help Students Learn?

By Daniel T. Willingham

Question: Is there any reason to be cautious when using manipula-
tives in class? I understand that some educators might have mis-
takenly thought that manipulatives—concrete objects that students 
handle mostly during math and science lessons—help because they 
give kinesthetic learners the hands-on experiences they need, and 
we now know that theory is wrong.1 Still, isn’t it the case that all 
small children learn better via concrete objects than via abstrac-
tions? Surely it helps students focus if classroom activities are mixed 
up a bit, rather than listening to endless teacher talk.

Answer: Research in the last few decades has complicated our 
view of manipulatives. Yes, they often help children understand 
complex ideas. But their effectiveness depends on the nature of 
the manipulative and how the teacher encourages its use. When 
these are not handled in the right way, manipulatives can actually 
make it harder for children to learn.

In 1992, in the pages of this magazine, Deborah Loewenberg 
Ball warned against putting too much faith in the efficacy 
of math manipulatives.* At the time, research on the topic 
was limited, but Ball noted the unwarranted confidence 

among many in the education world that “understanding comes 
through the fingertips.” (Manipulatives might also make ideas 
more memorable; here, I’ll focus on whether they aid the under-
standing of novel ideas.) Ball explained how the embodiment of 

How does the mind work—and especially how does it 
learn? Teachers’ instructional decisions are based on a mix 
of theories learned in teacher education, trial and error, craft 
knowledge, and gut instinct. Such knowledge often serves us well, 
but is there anything sturdier to rely on?

Cognitive science is an interdisciplinary field of researchers 
from psychology, neuroscience, linguistics, philosophy, computer 
science, and anthropology who seek to understand the mind. In 
this regular American Educator column, we consider findings 
from this field that are strong and clear enough to merit classroom 
application. 

Daniel T. Willingham is a professor of cognitive psychology at the Uni-
versity of Virginia. He is the author of When Can You Trust the Experts? 
How to Tell Good Science from Bad in Education and Why Don’t Stu-
dents Like School? His most recent book is Raising Kids Who Read: What 
Parents and Teachers Can Do. For his articles on education, go to www.
danielwillingham.com. Readers can post questions to “Ask the Cognitive 
Scientist” by sending an e-mail to ae@aft.org. Future columns will try to 
address readers’ questions.

*See “Magical Hopes” in the Summer 1992 issue of American Educator, available at 
www.aft.org/ae/summer1992/ball. IL
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a mathematical principle in con-
crete objects might be much 
more obvious to adults who 
know the principle than to chil-
dren who don’t. We see place 
value, whereas they see bundles 
of popsicle sticks. And isn’t the 
lesson, Ball asked, what really 
matters—not the manipulative, 
but how the teacher introduces 
it, guides its use, and shapes its 
interpretation?

Twenty-five years later, enthu-
siasm for manipulatives remains strong, especially in math and 
science.2 For example, a joint statement from the National Asso-
ciation for the Education of Young Children and the National 
Council of Teachers of Mathematics advises, “To support effective 
teaching and learning, mathematics-rich classrooms require a 
wide array of materials for young children to explore and manipu-
late.”3 Teachers seem to heed this advice. Empirical data are 
scarce, but surveys of teachers indicate that they think it’s impor-
tant to use manipulatives, and early elementary teachers report 
using them nearly every day.4

While enthusiasm for manipulatives seems not to have 
changed since 1992, the research base has. It shows that, although 
manipulatives frequently help children understand concepts, 
they sometimes backfire and prompt confusion.5 Instead of start-
ing with a catalogue of instances in which manipulatives help (or 
don’t), let’s first consider the theories meant to explain how 

manipulatives influence children’s thinking. Research has shown 
that two prominent theories are likely wrong. A third theory is 
more solid, and will provide a useful framework for us to consider 
some research findings. That, in turn, will provide guidance for 
classroom use of manipulatives.

Why Do Manipulatives Help?
Why might a child learn a concept when it is instantiated in physi-
cal materials that can be manipulated, whereas the same concept 
in symbolic form confounds the child? Jerome Bruner and, even 
more prominently, Jean Piaget offered answers rooted in the 
nature of child development.6 They suggested that young children 
think more concretely than older children or adults. Children 
depend on physically interacting with the world to make sense of 
it, and their capability to think abstractly is absent or, at best, pres-
ent only in a crude form. The concrete/abstract contrast forms 
one of the vital differences between two stages of cognitive devel-
opment in Piaget’s theory. In the concrete operational stage (from 
about age 7 to 12), the child uses concrete objects to support logi-
cal reasoning, whereas in the formal operations stage (age 12 to 
adulthood), the child can think using pure abstractions.

But much research in the last 50 years has shown that this 
characterization of children’s thought is inaccurate. Consider 

children’s understanding of num-
bers. Piaget suggested that pre-
schoolers have no understanding 
of numbers as an abstraction—
they may recite counting words, 
but they don’t have the cognitive 
representation of what number 
names really refer to.7

But later work showed that 
although children may make mis-
takes in counting, the way they 
count shows abstract knowledge 
of what counting is for and how to 
do it. When counting, they assign 
one numeric tag to each item in a 
set, they use the same tags in the 
same order each time, they claim 
that the last tag used is the num-
ber of items in the set, and they 

apply these rules to varied sets of objects.8 Preschoolers show 
abstract thinking in other domains as well, for example, their 
understanding of categories like “living things.”9 So it’s not the 
case that children’s thinking is tethered to concrete objects.

Another theory suggests that manipulatives help because they 
demand movement of the body. Some researchers propose that 
cognition is not a product of the mind alone, but that the body 
participates as well. In these theories, not all mental representations 
are completely abstract, but rather may be rooted in perception or 
action. For example, we might think that we have an abstract idea 
of what “blue” means, or what is meant when we hear or read the 
word “kick.” But some evidence suggests that thinking of “blue” 
depends on the same mental representation you use when you 
actually perceive blue. The meaning of the word “kick” depends on 
what it feels like to actually kick something.10

By this account, manipulatives are effective because their 

Manipulatives often help 
children understand  

complex ideas.
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demand for movement is in keeping with the way that thought is 
represented. If this theory is right, then instructional aids similar 
to manipulatives that aren’t actually manipulated shouldn’t 
help—it’s the movement that really matters. The last decade has 
seen a great deal of research on that question; do computer-based, 
virtual manipulatives work as well as the real thing? Although 
there are exceptions,11 computer-based manipulatives usually 
help students as much as physical ones.12 These findings don’t 
mean that movement is completely unrelated to cognition, but 
they make it doubtful that movement underpins the efficacy of 
manipulatives.

Furthermore, and crucial to our purposes, both theories—chil-
dren are concrete thinkers, and physical movement is central to 
thought—seem to predict that manipulatives will always lead to 
better understanding. As we’ll see, manipulatives are often help-
ful, but not always.13

A third theory provides a bet-
ter fit to the data. It suggests that 
manipulatives help children 
understand and remember new 
concepts because they serve as 
analogies; the things manipu-
lated are symbols for the new, 
to-be-understood idea. This 
hypothesis is a bit counterintui-
tive, because we think of manip-
ulatives working exactly because 
they are easily understood, read-
ily interpretable. But they are not 
to be interpreted literally. Pop-
sicle sticks or counters or rods 
are symbols for something else.14 
A set of popsicle sticks reifies the 
concept of number, which is 
abstract and difficult for the 
young child to wrap his or her mind around. Manipulatives are 
used so often in math and science exactly because those subjects 
are rife with unintuitive concepts like number, place value, and 
velocity.15

Analogies help us understand difficult new ideas by drawing 
parallels to familiar ideas. For example, children are already famil-
iar with fractions in some contexts. They may not have the words 
to describe their thinking, but they understand that a pizza can 
be considered a whole that is divisible by eight slices, and that 
when each of two people take four slices, they divide the pizza 
equally. The manipulative, then, calls on an existing memory (of 
pizza) and uses it as a metaphor, extending this existing knowl-
edge to something new (the abstract idea of fractions).16

The data that posed a problem for other theories are no problem 
here: this theory doesn’t predict that children can’t think abstractly, 
and it doesn’t accord any special role to moving the body. Indeed, 
this theory sits comfortably with other studies showing that embed-
ding problems in familiar situations helps students, even if there is 
nothing to manipulate physically or virtually.

For example, one study compared how well novices solved 
algebra problems in symbolic form and when problems were 
embedded in a familiar scenario.17 Some students saw “Solve for 
X, where X = .37(7) + .22,” and others read “After buying donuts at 

Wholey Donuts, Laura multiplies the 7 donuts she bought by their 
price of $0.37 per donut. Then she adds the $0.22 charge for the 
box they came in and gets the total amount she paid. How much 
did she pay?” Students in the latter condition were more success-
ful than those in the former.

In the next section we put this theory to work. Manipulatives 
sometimes flop when common sense would have us believe they 
ought to help. Thinking of manipulatives as analogies clarifies what 
might otherwise be a confusing pattern of experimental results.

Manipulatives Aid Understanding When 
Attention Is on the Relevant Feature
It seems obvious that children must attend to a manipulative if it 
is to work, and much research has focused on manipulatives’ 
perceptual richness (i.e., whether they are colorful and visually 
complex) because perceptual richness can draw the student’s 

attention. For example, in one 
study, researchers had fifth-
graders solve mathematical word 
problems involving money.18 
Some students were given play 
money as manipulatives to use 
while working the problems; 
these would be considered per-
ceptually rich because they were 
printed with lots of detail. Other 
children were also given coins 
and bills as manipulatives, but 
they were bland: simple slips of 
white paper with the monetary 
value written on them. A third 
group received no manipulatives. 
The researchers didn’t just count 
the number of problems correctly 
worked; they also differentiated 

types of errors when students got a problem wrong: conceptual 
errors (where students set up the math incorrectly) or noncon-
ceptual (e.g., copying the information inaccurately, adding two 
digits incorrectly, forgetting to show one’s work). Researchers 
found students made fewer conceptual errors when using the 
perceptually rich materials. (They also made many more non-
conceptual errors, a point to which we will return.)

Another experiment concerning attention and perceptual rich-
ness focused on 3- to 4-year-olds learning numerical concepts. 
Two sets of counters were placed on a table, and a crocodile was 
to be positioned so that it would “eat” the numerically larger set.19 
Researchers found that children learned more from the game if 
the counters were perceptually rich (realistic-looking frogs) 
instead of bland (simple green counters).

But in addition to varying the counter, experimenters also exam-
ined the role of instruction. In one condition, the experimenter 
acted as a player, taking turns with the child. In the other, the experi-
menter modeled how to play and provided feedback after the 
child’s turn. In this second condition, the instruction guided atten-
tion effectively. With it, children using the bland counters learned 
as much as those using the perceptually rich counters. Again, the 
child’s attention is thought to be critical; it can be drawn by the 
perceptually rich materials, or directed by the teacher.

But their effectiveness  
depends on the nature of the 

manipulative and how the 
teacher encourages its use.
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In some instances, the guidance of attention may be less 
explicit by simply instructing the student how the manipulative 
is to be used, which in turn makes attention to the right feature 
of the manipulative likely. Consider use of a physical, numbered 
line to help understand the concept of addition. Given the prob-
lem 6 + 3, the child might find 6 and then count “1, 2, 3,” and so 
find the answer, 9. But using the manipulative that way does not 
focus the child’s attention on the continuity of numbers. A better 
method is to find 6, and then count “7, 8, 9.”20

Researchers tested this idea by having kindergartners play a 
game similar to Chutes and Ladders, with a 10 by 10 array of num-
bers from 1 to 100 on a game board that players were to progress 
through, with a spinner determining the number of spaces to 
move on each turn.21 They instructed some children to count out 
their moves from 1; that is, if they were on number 27 on the game 
board and spun a 3, they were to count aloud “1, 2, 3.” Other chil-
dren were asked to count from the 
initial number, i.e., “28, 29, 30.” 
After two weeks of game play, the 
latter group showed significant 
gains in number understanding, 
compared with the former group.

Bruner thought teacher guid-
ance was crucial for manipulatives 
to aid learning.22 He suggested that 
students were unlikely to learn the 
target concepts if they were simply 
given the materials and encour-
aged to do with them what they 
wished. Bruner’s caution is in 
keeping with other research on 
pure discovery learning. When 
children are given little guidance 
in the hope that they will, in the 
course of loosely structured explo-
ration, discover key concepts in math and science, outcomes are 
usually disappointing, compared with situations using more 
explicit instruction.23 At the same time, overly restrictive, moment-
by-moment instructions about exactly what to do with manipula-
tives might be expected to backfire as well; this practice raises the 
risk that students would simply follow the teacher’s directions 
without giving the process much thought.24

Manipulatives Don’t Aid Understanding When 
Attention Is Not on the Relevant Feature
We might think that perceptually rich manipulatives are always 
the way to go. Why use green dots when you can use frogs? Of 
course frogs are going to be more engaging for students! But that 
conclusion would be hasty. Remember, manipulatives are analo-
gies, and analogies are usually imperfect. In an analogy, an unfa-
miliar, to-be-learned idea (e.g., fractions) is likened to a familiar 
idea (e.g., pizza) because they share one or more important quali-
ties (e.g., divisibility). But pizzas have lots of qualities that you 
would not want to impute to fractions: they are edible, they are 
purchasable, they are often found at parties, and so on. So it’s not 
enough that a manipulative call attention to itself by being per-
ceptually rich; it must call attention to the key feature, and not to 
other features. And indeed, manipulatives fail to aid understand-

ing when children focus attention on a feature that is irrelevant to 
the analogy. There are several ways that might happen.

First, the manipulative might simply be poorly designed in that 
it’s missing the crucial feature. A series of experiments has shown 
that playing a board game with numbers arrayed linearly helps 
children understand some properties of numbers.25 The benefit 
is obvious because we recognize the game is analogous to the 
number line. But if the game board’s numbers are arranged in a 
circle instead of a line, children don’t benefit.26

Second, the manipulative might have the relevant feature, but 
the child does not attend to it because some other feature is more 
salient. This is where perceptual richness can backfire. Imagine 
Cuisenaire rods (meant to help children understand number 
concepts) painted to look like superhero action figures. Students 
could hardly be blamed if they failed to focus on the differing 
length of the rods, which is their important symbolic feature.*

But the feature doesn’t need 
to be that obviously distracting to 
confuse children. The child has 
no way of knowing which features 
of the manipulative are impor-
tant and which are not. If the 
teacher uses apples as counters, 
is it important that apples are 
roughly spherical? That we know 
what the inside looks like, even 
though it’s not visible?27 Recall 
the experiment mentioned ear-
lier using play money. Perceptu-
ally rich manipulatives reduced 
conceptual errors (children set 
up the math problem correctly) 
but increased  other types of 
errors (e.g., calculation errors). 
Detailed manipulatives draw 

attention (which helps) but then may direct attention to irrele-
vant details (what Washington looks like on the bill).

Third, even if the child knows which feature of the manipula-
tive is relevant, it may be difficult to keep in mind that it is a sym-
bol. In the play money experiment, the children already had some 
experience with real money, and the play money was meant to 
serve the same purpose familiar to them. More often, the symbolic 
connection is new. A child is used to thinking of a slice of pie as 
something to eat. Now it’s supposed to represent the abstract idea 
“⅛ of a whole.”

Research has shown that this duality poses a problem. Research-
ers asked 3- and 4-year-olds to perform a counting task using 
manipulatives.28 The manipulatives varied in their perceptual rich-
ness and in children’s familiarity with the object: Some children 
were given objects to use as counters that were perceptually rich 
and familiar (e.g., small animal figurines). Others got objects that 
were familiar, but not perceptually rich (popsicle sticks). Still others 
got counters that were unfamiliar and perceptually rich (multi-
colored pinwheel blades) or counters that were unfamiliar and not 

Manipulatives fail to aid  
understanding when children 
focus attention on a feature 

that is irrelevant to the 
analogy.

*For more on how embellishment can be distracting, see “Keep It Simple to Avoid 
Data Distractions” in the Summer 2013 issue of American Educator, available at www.
aft.org/ae/summer2013/notebook.



AMERICAN EDUCATOR  |  FALL 2017    29

perceptually rich (monochrome 
plastic chips).

The researchers observed a 
substantial disadvantage in the 
counting task for children using 
the animal figurines, compared 
with the other groups. As we’ve 
seen in previous experiments, 
richness drew attention to the 
manipulative, just as it did in the 
play money experiment. In that 
case, the children were meant to 
think of the manipulative (play 
money) in the same way they thought of its symbolic referent 
(real money). But children already know animal figurines to be 
toys, which one plays with. It’s hard to also think of them as 
counters representing the abstract concept of number. The per-
ceptually rich pinwheel blades did not pose the same problem 
because, even though they drew the child’s attention, they were 
unfamiliar; it was easier to think of them as a symbol for some-
thing else, because the child did not think of them as having 
another purpose.

Thinking of an object as having two meanings overwhelms 
working memory in young children. This interpretation is sup-
ported by other landmark work on mental representation. In the 
standard paradigm, children are shown a diorama of a room and 
are told it is an exact model of a larger room that they will be shown. 
Then the experimenter hides a small Snoopy doll in the diorama 
and says that big Snoopy will be hiding in exactly the same place in 

the large room.29 The child is then taken to the large room (which 
is, indeed, identical in every way to the diorama, except for size) 
and is encouraged to find large Snoopy. Two-and-a-half-year-olds 
are terrible at this task. But they improve dramatically if they are 
shown the diorama behind a pane of glass; that makes them less 
likely to think of the diorama as a toy, leaving the child free to see it 
as a symbol. And 3-year-olds (who normally perform pretty well on 
the task) are worse at finding big Snoopy if they are prompted to 
think of the diorama as a toy by encouraging them to play with it 
before searching for big Snoopy.30

Moving Beyond the Manipulative
Obviously, our intention in using manipulatives is not to make 
children forever dependent on them; we don’t expect a high 
school student to pull out strings of beads as he or she prepares 
to do math homework. It’s not just that manipulatives are time-
consuming and inconvenient to use. They also fail to apply to an 
entire domain. Helping a child understand the idea of fractions 
by dividing a circular pizza or pie works well until you encounter 
a fraction with the denominator 9. Or 10,000. Or suppose a 
teacher uses colored chips to model counting and addition: 
black chips represent positive numbers and red chips are nega-
tive numbers. This manipulative leads to intuitive representa-

tions for many problems, but not 
for all. How would you represent 
5 + (−3)? Five black chips and 
three red chips?

These might seem like phan-
tom problems. We use manipula-
tives because we believe they will 
aid student understanding. We 
expect using pizza manipulatives 
will give students the conceptual 
understanding of fractions that 
they will then transfer to the sym-
bolic representation, so they 
won’t need a manipulative for a 
fraction with a denominator of 
10,000. We expect that the con-
ceptual knowledge will success-
fully apply to other concrete 
representations, like calculating 

how many books can fit on a bookshelf. Alas, it’s not so simple.
As we’ve seen, manipulatives that are perceptually rich draw 

attention to themselves, which can be good because they could 
highlight the right properties. For example, a “10s” rod is 10 times 
the length of a “1s” rod. In another example, college undergradu-
ates were taught a principle of self-organization called competi-
tive specialization, which is applicable to ant foraging. An 
interactive computer simulation depicted ants foraging for fruit, 
and students learned more quickly if the ants and fruit looked 
realistic (rather than being depicted as dots and color patches).31

But crucially, the study showed that transfer to a conceptu-
ally similar problem is worse with the realistic-looking ants 
than with the dots. Other work confirms that generalization. 
Undergraduates were taught a new math concept (commuta-
tive mathematical group of order 3) either using geometric 
shapes that were meaningless to the principle, or using sym-

Thinking of an object as  
having two meanings  
overwhelms working  

memory in young children.
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bols (cups of water) about which 
students had prior knowledge 
that was applicable to learning 
the new concept. Sure enough, 
students learned the concept 
more quickly with the familiar 
symbols, but transfer to differ-
ent problems was better with 
the abstract symbols.32

Even if students learn a concept 
with manipulatives and simulta-
neously learn it with written sym-
bols, the two may remain separate, 
with students never drawing the connection between them. This 
duality would explain the results of a yearlong study of third-graders 
using Dienes blocks (and other manipulatives) in their math class-
room.33 The researchers found that most children became proficient 
in using the blocks to solve problems, but those who were most 
proficient were actually the worst in working the same problems 
with standard written notation. It was as if using the blocks stayed 
mentally separate from the symbolic representation.

What guidance can this research review offer to 
classroom practice? A simple review of key con-
clusions makes a few things clear. First, we must 
temper our endorsement of manipulatives in 

classrooms with some caveats; there are instances where manipu-
latives will not speed children’s learning, and may even slow it 
down. Second, the objects themselves should draw attention to 

whichever feature is meant to convey information, for example, 
the length of a rod if it is meant as an analogy to number. Third, 
teachers should provide instruction in the use of the manipulative 
so that this feature is salient to students, but teachers should not 
be so controlling that students are merely executing instructions 
without thinking. In addition, students are more likely to under-
stand the concept the manipulative is meant to convey if that 
parallel is made explicit to them.

Two other ideas have less direct empirical support but are 
worth considering.

You’ll recall there was a tradeoff between the perceptual rich-
ness of the object used as a manipulative and the likelihood of 
successful transfer of learning. Students were quicker to learn the 
foraging principle when illustrated with realistic-looking ants, but 
the knowledge then seemed stuck to the example with the ants.

A principle known as concreteness fading might address this 
problem. Originally proposed by Bruner,34 the idea is that instruc-
tion begins with concrete, perceptually rich manipulatives, and 
students gradually move to more abstract symbols.35 The Singa-
pore math method offers an example.36 Preschoolers might ini-
tially use stuffed animals when working with number concepts, 
then animal stickers, then plain circular stickers, and then square 
blocks appended to form a line. Although concreteness fading 

was proposed 50 years ago, 
empirical research confirming 
the utility of this intuitively 
appealing idea is limited.

Another idea that seems like 
it ought to work (and yet has lim-
ited experimental backing) is the 
consistent use of the same set of 
manipulatives for the same con-
cept. It’s tempting for a teacher 
to use stickers as counters one 
day, Cheerios another, and so on. 
It adds some variety and would, 
it would seem, boost student 
engagement.

But thinking of manipulatives 
as analogies suggests student 
comprehension will be better if 
there is consistency between 

manipulatives and what they are to represent. Concreteness fading 
might be used to get students to the point of thinking of black chips 
as number units, for example, and, thereafter, they are used anytime 
number units are invoked. That reduces the memory load for stu-
dents, allowing them to benefit fully from their previous work. ☐
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