NIOSH Expedient Isolation Research

Presented To: AFT Nurses and Health Professionals, 10/06/2020

By: Kenneth R. Mead Ph.D., PE
Division of Field Studies and Engineering
National Institute for Occupational Safety and Health
Centers for Disease Control and Prevention
DISCLAIMERS

• The findings and conclusions in this discussion are those of the speaker and do not necessarily represent the views of the Centers for Disease Control and Prevention (CDC) or the National Institute for Occupational Safety and Health (NIOSH)

• Mention of any company or product does not constitute endorsement by CDC or NIOSH

• Citations to websites external to CDC do not constitute CDC or NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, CDC is not responsible for the content of these websites.
Toxicology Refresher (from an engineer!)

• Dose:
 — Airborne Dose = Airborne concentration x time x inhalation rate
 — Surface Contamination (from Infectious Aerosols):
 • $f(x)$: {concentration, settling rates, and time between cleanings}
 — Common variables: **Concentration & Time**

• Today’s discussion will focus on both the **Concentration** & **Time** variables.
Airborne Infection Isolation Rooms (AIIRs)

- Dedicated single-patient room
- At least 12 air changes per hour (ACH) total ventilation (6 ACH if pre-2001), including min. 2 ACH outside air
- Maintained at negative pressure relative to adjacent areas (-0.01 inches water gauge, or 2.5 Pa)
- All seams & penetrations sealed
- All air exhausted to outdoors, (CDC: unless HEPA-filtered and returned to dedicated HVAC system)
- Portable High Efficiency Particulate Air (HEPA) fan/filter systems can be used to increase effective ACH of air cleaning

References: ASHRAE Standard 170, CDC 2005 TB Guidelines, CDC Environmental Infection Control Guidelines
The Problem

- Large hospitals typically have limited number of engineered All rooms
- Small hospitals **may** have 1 engineered All room
- There is essentially NO engineered surge capacity in case of epidemic (natural or intentional)
- Non-hospital medical, social service facilities, and health departments generally lack isolation capabilities
GAO Report/Testimony: April 2003
(A historical perspective?)

• Nation’s capacity improved (since 09/11) but gaps in preparedness remain. Level of preparedness varied across jurisdictions.
• “..many hospitals lack capacity to respond to large scale infectious disease outbreaks.”
• “..most hospitals lack adequate equipment, isolation facilities, and staff...”
• “...initial response to an outbreak of infectious disease would occur at the local level...”
Typical Surge Response Plans:

• Patient transfer
• Big-area iso (hot) zones with patient cohorting (worker unfriendly)
• Respirators and surgical masks with traditional patient rooms
• Shut patient room door and hope that existing dilution ventilation system is sufficient.
• Dilution Filtration with Portable HEPA units to achieve equivalent 12 ACH
ACH vs Clearance Time Determination

- Estimates wait time required to enter room for cleaning following occupancy by patient potentially generating infectious aerosols

- Affects room turnover wait period between patients

- AllIRs have significant waits – Non-AllIRs generally have longer waits
ACH vs Clearance Time Determination

1. Airborne Contaminant Removal

Table B.1. Air changes/hour (ACH) and time required for airborne-contaminant removal by efficiency *

<table>
<thead>
<tr>
<th>ACH</th>
<th>Time (mins.) required for removal 99% efficiency</th>
<th>Time (mins.) required for removal 99.9% efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>138</td>
<td>207</td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>104</td>
</tr>
<tr>
<td>6+</td>
<td>46</td>
<td>69</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>52</td>
</tr>
<tr>
<td>10+</td>
<td>28</td>
<td>41</td>
</tr>
<tr>
<td>12+</td>
<td>23</td>
<td>35</td>
</tr>
<tr>
<td>15+</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>50</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

* This table is revised from Table 53-1 in reference 4 and has been adapted from the formula for the rate of purging airborne contaminants presented in reference 1435.

ACH vs Clearance Time Determination
(a closer look at the footnotes)

- **Table B-1 Footnotes** (2003 Infection Control Guidelines)
 - This table is revised from Table S3-1 in reference 4 and has been adapted from the formula for the rate of purging airborne contaminants presented in reference 1435.
 - The times given assume perfect mixing of the air within the space (i.e., mixing factor = 1). However, perfect mixing usually does not occur. Removal times will be longer in rooms or areas with imperfect mixing or air stagnation. Caution should be exercised in using this table in such situations.

- **Table S3-1 Footnotes** (CDC’s 1994 TB Guidelines)
 The times given assume perfect mixing of the air within the space (i.e., mixing factor = 1). However, perfect mixing usually does not occur, and the mixing factor could be as high as 10 if air distribution is very poor (98). The required time is derived by multiplying the appropriate time from the table by the mixing factor that has been determined for the booth or room.
Dilution Wait Times for Desired Removal Efficiency

<table>
<thead>
<tr>
<th>ACH</th>
<th>Minutes Required for the Desired Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90%</td>
</tr>
<tr>
<td>2</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Assuming the aerosol source is stopped and a good dilution ventilation design (K=3), it will take 69 minutes (3 x 23) to achieve a 99% dilution of airborne particulate (assumes 100% of reduction is via dilution).

\[
C_2 = C_1 e^{-\frac{Q\Delta t}{V}}
\]

\[
\Delta t = -\frac{V}{Q} \ln\left(\frac{C_2}{C_1}\right)
\]

NOTE: The times reported assume a mixing factor (K) of 1.0 (perfect mixing), multiply the time required by the actual mixing factor (Mixing factors can vary from one, for ideal mixing, to ten for poor mixing. As a rule of thumb, a mixing factor of three can be assumed for a room with 12 ACH and good air movement).
Expedient Isolation Research

Purpose: To evaluate portable filtration technology combined with increased levels of containment (as opposed to general room dilution) and directed airflows to provide expedient airborne isolation capability within healthcare settings not currently equipped for such isolation:

Basically looking for a cheap, easy, quick, yet effective “universal” method for reducing infectious aerosol concentrations and potential exposures to healthcare workers.
Researched Scenarios

- Used portable HEPA filtration units like those already found in health care facilities

Photos Credited To: CDC/NIOSH
Portable Air Cleaners

• High efficiency particulate air (HEPA) fan/filter units
• HEPA = 99.97% efficient at 0.3 microns, even greater efficiency at other size ranges both smaller and larger than 0.3 microns.
• Human-generated infectious aerosol generally 1 um and larger.
• HEPA filtered air = clean outdoor air (from infectious aerosol perspective)
• Can also be used to augment Pressurization, Directional Airflow, and Direct Source Capture control techniques.
Expedient Isolation: Zone-within-Zone

- Sample Positions
- Source (nebulizer w/ ~1.6 um psl beads)

Fabric curtains replaced with floor-to-ceiling plastic curtains

BED 1
BED 2
HEPA Unit
Supply 1
Supply 2
Exh.
1
2
3
4
5
6

Sample Positions

Source (nebulizer w/ ~1.6 um psl beads)

Fabric curtains replaced with floor-to-ceiling plastic curtains

Partition

Restroom

Lockers

Sample Positions

Source (nebulizer w/ ~1.6 um psl beads)
1. A “no-control” condition without HEPA filtration or HVAC manipulation

2. A “control-on” condition with the HEPA system activated and the HVAC supply louvers left open (deflected)

3. Another “control-on” condition with the HEPA system activated and the HVAC supply louvers sealed closed
Alternative Approaches

• Reduce volume of contaminated zone (a.k.a. Zone-Within-Zone)
 – Effectively increases ACH w/in inner zone

HEPA FAN: Pulls air from inner iso zone, cleans it and discharges it to outer zone

Photo Credit: CDC/NIOSH
Qualitative Smoke Tests

• Cumulus “Flow Checker” hand-held smoke generator (Photo Credit: Draeger)

• “Wizard Stick” toy (Photo Credit: www.teachersource.com)
Source (Aerosol) Generation

- **ProNeb Ultra w/PARI LC Star Nebulizer** (PARI Innovative Mani. Inc.)
- **R.O. H₂O w/ 3 drops ~1.6 μm polymer microspheres** (Duke Scientific)

Photo Credit: CDC/NIOSH
Aerosol Generation/Measurement

Photos Credited to: CDC/NIOSH
Bin-Size Distribution Graph Of Generated Aerosol

Size Bin: microns (um)

Total Particle Count

0.35<x<0.5 0.5<x<0.75 0.75<x<1.0 1.0<x<2.0 2.0<x<3.5 3.5<x<5.0 5.0< x
Field Methodology

• The research was performed in multiple healthcare settings not currently engineered for airborne infectious isolation.

• Selected locations were two urban hospitals and two smaller, rural hospitals all within the states of Oklahoma and Kansas.

• Each facility received repetitive evaluations of the two expedient isolation design variations previously identified in the feasibility study.
Field Methodology

• Sought consistency with two key design and operational criteria currently applied to engineered airborne isolation rooms.

 – **Patient area:** Min. 100-120 sq-ft per patient.

 – **Volumetric flow rate:** Filtration flow rate (Q) sized to provide a minimum of 12 ACH within patient room (regardless of any smaller containment zone).
Analysis: Aerosol Spectrometer Data

- Wanted: Control-On to Control-Off Ratio count data

- The “control-on” test condition (conditions #2 and #3) data held much smaller particle (and right skewed) count values than those observed during the “control-off” condition (condition #1)

- Aerosol particle counts observed at the sample positions were log-transformed and the geometric means determined for the respective trials.

- The control-on conditions #2 and #3 were then compared with the uncontrolled condition #1 through a ratio of geometric means (gmean), which were presented in the form of:
 \[\text{Geometric Mean Reduction Ratio} = \frac{(g\text{mean}_1 - g\text{mean}_x)}{g\text{mean}_1} \]
 for \(x = 2, 3 \)

Results
Expeditious Isolation Configuration
VA Medical Center (VAMC), OKC, OK

Room Area ~ 320 sq-ft
Room Vol ~ 2570 cu-ft
12 AC/Hr ~ 515 cfm

Fabric curtains replaced with floor-to-ceiling plastic curtains (red portion non-retractable)

Return air sealed for control-on runs

192 cfm
137 cfm
192 cfm
137 cfm

HEPA
550 cfm

Sample positions (Grimms & IH)
Dosing positions

HVAC supply sealed with tape or deflected with plastic to achieve control conditions
Grimm Aerosol Counts
GMean Reduction Ratios
2:1 / 3:1

NOTE: Sample position labeling differs from other sites, point E (not shown) was at filter inlet and was not used for analysis.

Room Area ~ 320 sq-ft
Room Vol ~ 2570 cu-ft
12 AC/Hr ~ 515 cfm

Fabric curtains replaced with floor-to-ceiling plastic curtains (red portion non-retractable)

Return air sealed for control-on runs

HVAC supply sealed with tape or deflected with plastic to achieve control conditions

0.98/0.99
0.96/0.99
0.99/0.99
0.99/0.99
0.99/0.99
0.16/0.13
-0.8/-0.77

Sample positions (Grimms & IH)
Dosing positions
Rm 525, 2-Bed: Great Bend, KS
HEPA
355 cfm
Q_{exh} = 0
FD
B
C
A
H
NOTE: Sample position labeling differs from other sites, point E (not shown) was at filter inlet and was not used for analysis.

Windows sealed with plastic (typ of 2)

HVAC kickboard return channeled to pick-up from outer zone

Inner patient zones ~ 70 sq-ft (typ of 2)

Partition used to “turn” air

Q = 60/30 cfm
Q = 182/61 cfm (total/supply)

Zone-within-Zone:
Central KS Medical Center (CKMC)
Great Bend, KS

Drawing not to scale

Sample locations (Grimm & IH)

Source generation points
Rm 525, 2-Bed: Great Bend, KS

HEPA
355 cfm

Q_{exh} = 0

FD
B
C
A
H

NOTE: Sample position labeling differs from other sites, point E (not shown) was at filter inlet and was not used for analysis.

Sample locations (Grimm & IH)

Source generation points

Windows sealed with plastic (typ of 2)

HVAC kickboard return channeled to pick-up from outer zone

Inner patient zones ~ 70 sq-ft (typ of 2)

Rm-area ~ 345 sq-ft
Rm-vol. ~ 2760 cu-ft
12 AC/hr ~ 550 cfm

\[Q = \frac{60}{30} \text{ cfm} \]

\[Q = \frac{182}{61} \text{ cfm} \text{ (total/supply)} \]

Grimm Aerosol Counts
GMean Reduction Ratios
2:1 / 3:1

CKMC

Zone-Within-Zone

\[Q_{exh} = 0 \]

Drawing not to scale
Zone-within-Zone, ST Joseph Memorial Hospital (SJMH), Larned, KS

Recirc. Unit 280 cfm on high setting

8' x 8' inner patient areas

Sample positions (Grimms & IH)

Dosing positions

Entrance

Q_{exh} = 0 cfm

6"x6" O.A. supply = 40 cfm

Plastic curtain

Plastic curtain
Zone-within-Zone, ST Joseph Memorial Hospital (SJMH), Larned, KS

Recirc. Unit
280 cfm on high setting

Entry

Sample positions
(Grimms & IH)

Dosing positions

Plastic curtain

8' x 8' inner patient areas

HEPA 355 cfm

Zones:

A

B

C

D

E

F

G

H

Grimm Aerosol Counts

GMean Reduction Ratios

.98/.99

.24/.54

.20/.64

.17/.79

.25/.91

.99/.99

.99/.99

.99/.99

.99/.99

.99/.99

.99/.99

.24/.54

.20/.64

.17/.79

.25/.91

.99/.99

.99/.99

.99/.99

.99/.99

Grimm Aerosol Counts

GMean Reduction

6"x6" O.A. supply = 40 cfm

Q_{exh} = 0 cfm

PLastic curtain

8' x 8' inner patient areas

A

B

C

D

E

F

G

H

Zone-within-Zone, ST Joseph Memorial Hospital (SJMH), Larned, KS
Rm 955, 2-Bed: Integris-Baptist OKC

Exh.
HEPA
Cabinets
64 cfm (Blocked to 0 cfm)

Scale: ¼ in. = 1 ft. 0 in.

Sample positions (Grimms & IH)
Dosing positions

Integris Baptist Medical Center
Zone-within-Zone
OKC, OK
Integris Baptist Medical Center
Zone-within-Zone
OKC, OK

Rm 955, 2-Bed: Integris-Baptist OKC

Grimm Aerosol Counts
GMean Reduction Ratios
2:1 / 3:1

Sample positions (Grimms & IH)

Dosing positions

Scale: ¼ in. = 1 ft. 0 in.
<table>
<thead>
<tr>
<th>Hospital Sample Pos.</th>
<th>VAMC 2:1</th>
<th>3:1</th>
<th>CKMC 2:1</th>
<th>3:1</th>
<th>SJMH 2:1</th>
<th>3:1</th>
<th>IBMC 2:1</th>
<th>3:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCW-Upstream</td>
<td>0.134</td>
<td>0.163</td>
<td>0.998</td>
<td>0.993</td>
<td>0.241</td>
<td>0.544</td>
<td>0.998</td>
<td>0.998</td>
</tr>
<tr>
<td></td>
<td>(-4.10)</td>
<td>(-5.65)</td>
<td>(0.993 0.971)</td>
<td></td>
<td>(-0.536 0.076)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCW-Downstream</td>
<td>-0.767</td>
<td>-0.800</td>
<td>0.928</td>
<td>0.993</td>
<td>0.204</td>
<td>0.641</td>
<td>0.996</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>(na)</td>
<td>(na)</td>
<td></td>
<td></td>
<td>(na)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient chest</td>
<td>na</td>
<td>(na)</td>
<td>0.761</td>
<td>1.00</td>
<td>0.171</td>
<td>0.791</td>
<td>0.998</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>(na)</td>
<td></td>
<td></td>
<td></td>
<td>(na)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient feet</td>
<td>na</td>
<td>(na)</td>
<td>na</td>
<td>(na)</td>
<td>0.247</td>
<td>0.911</td>
<td>0.999</td>
<td>0.998</td>
</tr>
<tr>
<td></td>
<td>(na)</td>
<td></td>
<td></td>
<td></td>
<td>(-0.525 0.821)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside Gap 1</td>
<td>0.998</td>
<td>0.999</td>
<td>0.998</td>
<td>0.993</td>
<td>0.984</td>
<td>0.991</td>
<td>0.998</td>
<td>0.998</td>
</tr>
<tr>
<td></td>
<td>(0.991 0.989)</td>
<td></td>
<td>(0.994 0.983)</td>
<td></td>
<td>(0.968 0.982)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center Room</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>0.998</td>
<td>0.996</td>
<td>0.996</td>
<td>0.995</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>(0.994 0.991)</td>
<td></td>
<td>(0.996 0.996)</td>
<td></td>
<td>(0.992 0.992)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside Gap 2</td>
<td>0.993</td>
<td>0.997</td>
<td>0.999</td>
<td>0.999</td>
<td>0.988</td>
<td>0.997</td>
<td>0.998</td>
<td>0.997</td>
</tr>
<tr>
<td></td>
<td>(0.958 0.979)</td>
<td></td>
<td>(0.996 0.998)</td>
<td></td>
<td>(0.965 0.989)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bed 2</td>
<td>0.987</td>
<td>0.997</td>
<td>0.999</td>
<td>0.996</td>
<td>0.987</td>
<td>0.991</td>
<td>0.998</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>(0.942 0.989)</td>
<td></td>
<td>(0.996 0.991)</td>
<td></td>
<td>(0.971 0.982)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of GMRRs and lower limits (in parentheses) for the Zone-Within-Zone (2-Bed) expedient isolation field studies, aerosol spectrometer data simultaneously–corrected for $\alpha = 0.10$ (Bold Red font = GMRR <90%).
Summary of GMRRs and lower limits (in parentheses) for the Zone-Within-Zone (2-Bed) expedient isolation field studies, aerosol spectrometer data simultaneously–corrected for $\alpha = 0.10$ (Bold Red font = GMRR <90%)

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Sample Pos.</th>
<th>VAMC 2:1</th>
<th>3:1</th>
<th>CKMC 2:1</th>
<th>3:1</th>
<th>SJMH 2:1</th>
<th>3:1</th>
<th>IBMC 2:1</th>
<th>3:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCW-Upstream</td>
<td></td>
<td>0.134</td>
<td>0.163</td>
<td>0.998</td>
<td>0.993</td>
<td>0.241</td>
<td>0.544</td>
<td>0.998</td>
<td>0.998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-4.10)</td>
<td>(-5.65)</td>
<td>(0.993)</td>
<td>0.971</td>
<td>(-0.536)</td>
<td>0.076</td>
<td>(0.986)</td>
<td>0.989</td>
</tr>
<tr>
<td>HCW-Downstream</td>
<td></td>
<td>-0.767</td>
<td>-0.800</td>
<td>0.928</td>
<td>0.993</td>
<td>0.204</td>
<td>0.641</td>
<td>0.996</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
</tr>
<tr>
<td>Patient chest</td>
<td></td>
<td>na</td>
<td>(na)</td>
<td>0.761</td>
<td>1.00</td>
<td>0.171</td>
<td>0.791</td>
<td>0.998</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
</tr>
<tr>
<td>Patient feet</td>
<td></td>
<td>na</td>
<td>(na)</td>
<td>na</td>
<td>0.247</td>
<td>0.911</td>
<td>(0.525)</td>
<td>0.821</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
<td>(na)</td>
</tr>
<tr>
<td>Outside Gap 1</td>
<td></td>
<td>0.998</td>
<td>0.999</td>
<td>0.998</td>
<td>0.993</td>
<td>0.984</td>
<td>0.991</td>
<td>0.998</td>
<td>0.998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.991)</td>
<td>(0.989)</td>
<td>(0.994)</td>
<td>0.983</td>
<td>(0.968)</td>
<td>0.982</td>
<td>(0.987)</td>
<td>0.991</td>
</tr>
<tr>
<td>Center Room</td>
<td></td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
<td>0.998</td>
<td>0.996</td>
<td>0.996</td>
<td>0.995</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.994)</td>
<td>(0.991)</td>
<td>(0.996)</td>
<td>(0.996)</td>
<td>(0.992)</td>
<td>(0.992)</td>
<td>(0.970)</td>
<td>(0.979)</td>
</tr>
<tr>
<td>Outside Gap 2</td>
<td></td>
<td>0.993</td>
<td>0.997</td>
<td>0.999</td>
<td>0.999</td>
<td>0.988</td>
<td>0.997</td>
<td>0.998</td>
<td>0.997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.958)</td>
<td>(0.979)</td>
<td>(0.996)</td>
<td>(0.998)</td>
<td>(0.965)</td>
<td>0.989</td>
<td>(0.987)</td>
<td>0.981</td>
</tr>
<tr>
<td>Bed 2</td>
<td></td>
<td>0.987</td>
<td>0.997</td>
<td>0.999</td>
<td>0.996</td>
<td>0.987</td>
<td>0.991</td>
<td>0.998</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.942)</td>
<td>(0.989)</td>
<td>(0.996)</td>
<td>(0.991)</td>
<td>(0.971)</td>
<td>0.982</td>
<td>(0.990)</td>
<td>0.979</td>
</tr>
</tbody>
</table>
Discussion

• Containment Within Inner iso zones:
 GMRRs 98.4-99.9%+
 90% LCLs 94.2-99.8%
• Center-of-room results across all sites and configurations:
 GMRRs 99.5-99.9%
 90% LCLs 97-99.8%
• Worker exposure reductions (within inner iso zone) were more variable:
 - No meaningful exposure reductions (i.e. GMRR 90% LCLs <10%) associated with the two corner-to-corner/zone-within-zone configurations. However these areas still benefited from the increased dilution resulting (greater than 30 ACH) from the smaller isolation zone.
 - For side-to-side configuration, bedside worker exposure reductions were promising: GMRR: 92.8 - 99.9% + the increased dilution benefits.
Expedient Isolation Protection Factor (EIPF)

- A surrogate measure of the workplace protection
- Analogous to Simulated Workplace Protection Factor (SWPF) used by NIOSH in respirator testing.
- EIPF can be calculated by:

\[
EIPF = \left(1 - GMRR\right)^{-1.0}
\]
Center Room Sample Results Across four study sites:

Mean EIPF = 364 (200-1000)

20-100 times OSHA’s N95 APF of 10
Research Conclusions
(https://www.cdc.gov/niosh/surveyreports/pdfs/301-05f.pdf)

• Current isolation guidance does not adequately address bioterrorism and epidemic response needs at the local level.
• Shortages of isolation capacity may impede the medical response to an emergency
• Current trends in surge iso design do not sufficiently address worker protection issues
• Expedient in-room isolation strategies employing high-flow HEPA filtration offer an alternative to emergency AIIs that is:
 - Affordable
 - Available
 - Effective
 - Fast to set up
NIOSH Webpage & Assembly Instructions

Source: CDC/NIOSH
(https://www.cdc.gov/niosh/topics/healthcare/engcontrolsolutions/expedient-patient-isolation.html)
Alternative Application: Protective (“Reverse”) Isolation

- Tested in this configuration following Japanese Tsunami & Fukushima Nuclear Incident.
- Emergency method for developing surge capacity in protective (reverse isolation) environments.
- Prescribed for patients who are immunosuppressed due to radiation exposure.
- Direction of filtered airflow is reversed from Airborne Infectious Isolation mode, providing positive pressure protective isolation.
- “Fit Test” protection factor > 15000
- ISO Class 5 Cleanroom Condition Under Hood (equivalent to that req’d for sterile pharmacy compounding)

CDC/NIOSH Photo Showing Ventilated Headboard Tested In Reverse Isolation Mode:
Questions?

Contact info: Ken Mead (513) 841-4385
kmead@cdc.gov

For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this presentation are those of the authors and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. Mention of any company or product does not constitute endorsement by NIOSH, CDC.