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4 What’s Sophisticated about Elementary Mathematics? 
Plenty—That’s Why Elementary Schools Need Math Teachers
By Hung-Hsi Wu

Improving mathematics instruction is a priority in the United States, but there’s 
little agreement on how to do it. Here’s an idea that is rarely discussed: starting 
no later than fourth grade, math should be taught by math teachers (who teach 
only math). Teaching elementary math in a way that prepares students for 
algebra is more challenging than many people realize. Given the deep content 
knowledge that teaching math requires—not to mention the 
expertise that teaching reading demands—it’s time to 
reconsider the generalist elementary teacher’s role.
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handful of key characteristics that 
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teacher collaboration, a sharp 
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assessments that inform instruc-
tion, and strong relationships 
between adults and children.
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By Roger G. Kennedy

During the Great Depression, 
thousands of artists were hired to 
depict “the American Scene.” While 
the works revealed much suffering, 
they also captured the hard-work-
ing, self-reliant spirit of the people.
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American Teachers Embrace the 
Japanese Art of Lesson Study
By Jennifer Dubin

Lesson study is a form of profes-
sional development in which 
teachers work together to develop a 

lesson and think about how 
students learn. The point is not the 
resulting lesson so much as what 
teachers learn as they study the 
content, consider instructional 
methods, and reflect on how their 
chosen approaches influence 
student understanding. 

35 Learning Science
Content—With Reason
By Paul R. Gross

A recent study claimed that learning 
scientific content does not give 
students an edge in scientific 
reasoning. But the preponderance 
of the evidence clearly indicates that 
learning scientific content does 
enhance scientific reasoning—and 
students and scientists need both.
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MAILBOX

I read with great interest Richard 
Rothstein’s article in the Summer issue. 
He rightly points out that students can’t 
learn if they are not consistently healthy 
or well fed. What was not mentioned in 
the article is that students can’t learn if 
their emotional needs are not met in a 
consistent manner. Unsettled home 
situations hamper many a smart stu-
dent’s ability to succeed in school, and 
that is what I see more often than not.

–RACHEL HORWITz 
McKinley Middle School  

Albuquerque, N.M.

Thank you for devoting the Summer 
issue to community schools across the 
country, especially at this time when 
schools are under increasing pressure to 
meet the increasing needs of students, 
families, and communities, and to do so 
with smaller budgets and fewer 
resources. Schools cannot do it alone—
school/community partnerships are 
necessary.

In Illinois, community school work is 
having positive impacts on students and 
families throughout the state. The 
Federation for Community Schools has 
identified more than 250 community 
schools in the state, including roughly 
150 in Chicago, as well as nearly 100 
more school/community partnerships 
ready to undertake the transformation to 
community schools.

Recently, the Illinois General Assem-
bly passed a community schools bill, HB 
684, that amends the state’s school code 
to include community schools. The bill’s 
success isn’t just a mark of the great 
community school work going on in 

Illinois, but is also a sign 
of the support that 
community schools 
have from legislators 
and policymakers 
alike.

We also believe that 
by removing barriers 
to student success 
outside the classroom, 
community schools enable children and 
young people to be better learners in the 
classroom, and also enable teachers to 
focus on what they love and do best—
teach. We were thrilled to see the AFT 
spread this message with its members, 
too.

–SUzANNE ARMATO  
The Federation for Community Schools 

Chicago, Ill.

All Right Already
As an English teacher, I was disappointed 
when I turned to page 8 of the Summer 
2009 issue. I was surprised to see “all 
right” spelled as one word, and in the 
title, no less! According to the American 
references with which I am familiar, this 
is still not accepted as standard. Please 
accept my stickler’s plea for correct 
usage, as my heart may not be able to 
take another shock. Other than that, I 
find your publication refreshing, inspira-
tional, and current.

–SHELLy NEAL 
Blackford County Schools 

Hartford City, Ind. 

Editors’ reply:
A handful of readers wrote to express their 
disapproval of our choice to use the 
nonstandard spelling of all right (see 

“These Kids Are 
Alright,” Summer 2009). 
While we saw the 
selection of both kids 
and alright as an 
attempt to set an 
informal tone for the 
article, we appreciate 
hearing from our 
readers—and we’re all 
right with their preference 

for standard spellings.

Spring Issue Provides Insights
To use New York City’s numerical report 
card scores for American Educator 
articles is to consistently mark in 3.5 
(more than meeting the professional 
expectation) to 4 (exceeding the stan-
dard). The Spring 2009 edition is a 
straight 4 cover to cover. Daniel T. 
Willingham is always a genius for making 
us think—no matter how hard it is—and 
the contribution by Rothstein, Jacobsen, 
and Wilder, “Grading Education,” takes a 
teaching moment spotlight for a quote 
that should be on the front door of every 
school building. “Teachers are expected 
to repeat the mantra ‘all children can 
learn,’ a truth carrying the false implica-
tion that the level to which children learn 
has nothing to do with the out-of-school 
supports they receive.” My professional 
mantra, which leads my lesson plans, is: 
it is not a question of if and can children 
learn, it is a matter of what and when 
they learn and how will they apply their 
knowledge to our purposes here.

–DALE BENJAMIN DRAKEfORD 
P.S. 132 and P.S. 204 

Bronx, N.Y.

Readers Say Yes to  
Community Schools

Richard Rothstein’s article, “Equalizing Opportu-
nity: Dramatic Differences in Children’s Home Life 
and Health Mean That Schools Can’t Do It Alone,” 
was one of the best articles on the topic I have 
ever read. I have been teaching in the Philadelphia 
Public Schools since 1981, and I have seen or expe-
rienced the frustrations associated with everything 
Mr. Rothstein mentions. 

–ANITA BROOK DUPREE 
The School District of Philadelphia 

Philadelphia, Pa.

16
Freeing Teachers to Teach and Enabling Students to Learn

22
Community Schools’ Enduring Appeal

30
Coordinating Academic, Health, and Social Services

Surrounded by SupportPARTNERSHIPS BETWEEN COMMUNITIES AND SCHOOLS  

CONNECT STUDENTS WITH THE SERVICES THEY NEED



AMERICAN EDUCATOR  |  FALL 2009    3

I thought I might be able to add some-
thing to “Dispelling Myths about Teacher 
‘Tenure,’ ” which appeared in the Spring 
2009 issue. I have been in this profession 
a long time, having been a teacher, a 
custodian, and a superintendent. I know 
the value of having a union, especially in 
public education.

In 1960, I began my first classroom 
job. Many of us were recent military 
veterans and the need to have better 
income was a major concern. But boards 
of education were resistant to any pleas 
for help. Teacher presence at board 
meetings was often met with veiled 
threats of contract nonrenewal. The need 
for a strong united voice, along with a fair 
and consistent evaluation policy, was 
actually created by the unfair labor 
practices and lack of respect for the 
teaching profession by both elected 
board members and school administra-
tors that existed in those days. We were 
dispensable. While low pay was an issue, 
the “take it or leave it policy” stayed in 
effect until the unions and collective 
bargaining were established.

After retiring as a school superinten-

dent, I returned to the classroom. I 
joined our local association and the 
national association because I know a 
united voice is needed. I also know that 
these associations have established fair 
evaluation procedures and fair labor 
practices. Neither of these protects the 
ineffective or poor-performing teacher if 
the administration is doing its job.

–JIM RUBRIGHT 
Three Oaks Middle School 

Fort Myers, Fla.

I found the article, “Why Don’t Students 
Like School?” by Daniel T. Willingham 
(Spring 2009) quite interesting because it 
confirms some of the things I have been 
observing for a long time. As an experi-
enced secondary mathematics educator, 
I have concluded that the big movement 
in secondary math education toward 
emphasizing “critical thinking” will fail if 
students are not well grounded with 
mathematical background knowledge. 
So unless this background knowledge is 
learned first, students cannot possibly 
solve any problem successfully no matter 
how much they think about it. 

The American Federation of Teachers partners with Drexel University Online to
bring you a special AFT Members Plus Benefit! You and your immediate family
members are entitled to receive a 30% tuition reduction on all graduate education
programs and a 10-25% tuition reduction on all other programs at Drexel Online.

Receive a 30% Tuition Reduction
on accredited graduate education programs

AFT Members Benefit at Drexel Online

Drexel Online. A Better U.®

kathryn.pischke@drexel.edu | (215) 895-0513
Established 1891

Learn More:

drexel.com/aft-benefits
There’s no cost to apply online!

The prerequisite knowledge may 
consist of knowing properties of numbers 
such as the distributive property (used in 
an example in the article) or the proce-
dure for how to factor a specific polyno-
mial. As the author points out, thinking 
occurs when a student combines 
information from the “environment” and 
her long-term memory in new ways.

–EDWARD ESPARzA 
University of Texas at San Antonio 

San Antonio, Texas

I want to commend you for including 
vocational education as one of the goals 
for public education in your article 
“Grading Education,” which appeared in 
the Spring 2009 issue. The public high 
schools that only offer college-prep 
courses are denying meaningful educa-
tion for the students who do not plan on 
going to college. Instead of offering a 
college-prep program watered down to 
accommodate all students, we should 
offer equally rigorous options to aca-
demic and nonacademic students.

–JULIA fONG 
Lincoln High School 
San Francisco, Calif.
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By Hung-Hsi Wu

Some 13 years ago, when the idea of creating a cadre of 
mathematics teachers for the upper elementary grades 
(who, like their counterparts in higher grades, would 
teach only mathematics) first made its way to the halls of 

the California legislature, the idea was, well, pooh-poohed. One 
legislator said something like: “All you have to do is add, subtract, 
multiply, and divide. How hard is that?”

The fact is, there’s a lot more to teaching math than teaching 
how to do calculations. And getting children to understand impor-

What’s Sophisticated about                
Elementary Mathematics?

tant ideas like place value and fractions is hard indeed.
As a mathematician who has spent the past 16 years trying to 

improve math education—including delivering intensive profes-
sional development sessions to elementary-grades teachers—I 
am an advocate for having math instruction delivered by math 
teachers as early as possible, starting no later than fourth grade.* 
But I also understand that until you appreciate the importance 
and complexity of elementary mathematics, it will not be apparent 
why such math teachers are necessary. 

In this article, I address two “simple” topics to give you an idea 
of the advanced content knowledge that is needed to teach math 
effectively. Our first topic—adding two whole numbers—is espe-
cially easy. The difficulty here is mostly in motivating and engag-
ing students so that they come to understand the standard addi-
tion algorithm and, as a result, develop a deeper appreciation of 
place value (which is an absolutely critical topic in elementary 

Hung-Hsi Wu is a professor emeritus of mathematics at the University of 
California, Berkeley. He served on the National Mathematics Advisory 
Panel and has written extensively on mathematics textbooks and teacher 
preparation. Since 2000, he has conducted professional development 
institutes for elementary and middle school teachers. He has worked with 
the state of California to rewrite its mathematics standards and assess-
ments, and was a member of the Mathematics Steering Committee that 
contributed to revising the math framework for the National Assessment 
of Educational Progress. He was also a member of the National Research 
Council’s Mathematics Learning Study Committee.IL
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Plenty—That’s Why Elementary Schools Need Math Teachers

*There have been calls for math teachers in the education literature, among them the 
National Research Council’s Adding It Up (see pages 397–398, available at www.nap.
edu/catalog.php?record_id=9822#toc) and the National Mathematics Advisory Panel’s 
Foundations for Success (see Recommendation 20 on page xxii, available at www.ed. 
gov/about/bdscomm/list/mathpanel/report/final-report.pdf).
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math). This discussion of addition may not convince you that 
math teachers are a necessity in the first through third grades, but 
it will give you a deeper appreciation of the important mathemati-
cal foundation that is being laid in the early grades.

Our second topic—division of fractions—is substantially 
harder, though it’s still part of the elementary mathematics con-
tent as it should be taught in fifth and sixth grades. This is a topic 
that, in my experience, many adults struggle with. My goal here is 
twofold: (1) to show you that elementary math can be quite 
sophisticated, and (2) to deepen your knowledge of division and 
fractions. Along the way, I think it will become apparent why 
mathematicians consider facility with fractions essential to, and 
excellent preparation for, algebra. By the end, I hope you will join 
me in calling for the creation of a cadre of teachers who specialize 
in the teaching of mathematics in grades 4–6. For simplicity, we 
will refer to them as math teachers, to distinguish them from ele-
mentary teachers who are asked to teach all subjects.

Adding Whole Numbers
Consider the seemingly mundane skill of adding two whole num-
bers. Take, for example, the following.

 

45
+ 31

76 
Nothing could be simpler. This is usually a second-grade lesson, 
with practice continuing in the third grade. But if you were the 
teacher, how would you convince your students that this is worth 
learning? Too often, children are given the impression that they 
must learn certain mathematical skills because the teacher tells 
them they must. So they go through the motions with little per-
sonal involvement. This easily leads to learning by rote. How, then, 
can we avoid this pitfall for the case at hand? One way is to teach 
them what it means to add numbers, why it is worth knowing, why 
it is hard if it is not done right, and finally, why it can be fun if they 
learn how to add the right way.

All this can be accomplished if you begin your lesson with a 
story, like this: Alan has saved 45 pennies and Beth has saved 31. 
They want to buy a small package of stickers that costs 75 cents, 
and they must find out if they have enough money together. To 
act this out, you can show children two bags of pennies, one bag 
containing 45 and the other 31. Now dump them on the mat and 
explain that they have to count how many there are in this pile. 
Chances are, they will mess up as they count. Let them mess up 
before telling them there is an easier way. Go back to the bags of 
45 and 31, and explain to them that it is enough to begin with 45 
and continue to count the pennies in the bag of 31. In other words, 
to find out how many are in 45 and 31 together, start with 45 and 
just go 31 more steps; the number we land on is the answer. To show 
them that making these steps corresponds exactly to counting, do 
a simple case with them. If there are 3 pennies in the smaller bag 
instead of 31, then going 3 steps from 45 lands at 48 because

45 → 46 → 47 → 48.

So 48 is the total number of pennies in the two bags of 45 and 3. 
Now ask them to count like this for 45 and 31; chances are, most 
of them will find this a bit easier but many will still mess up. You 
can help them get to 76, but they probably will get frustrated. That 
is good: here is something they want to learn, but they find it is 

not so easy. 
Then you get to play the magician. Tell them that what they are 

doing is called “adding numbers.” In this case, they are adding 31 
to 45, written as 45 + 31 (teach them to write addition horizontally 
as well as vertically from the beginning), and what it means is that 
it is the number they get by starting with 45 and counting 31 more 
steps. Show them they do not have to count so strenuously to get 
the answer to 45 + 31 because they can do two simple additions 
instead, one being 4 + 3 and the other 5 + 1, and these give the two 
digits of the correct answer 76. 

You can demonstrate this effectively by collecting the 45 pen-
nies and putting them into bags of 10; there will be 4 such bags 
with 5 stragglers. Do the same with the other 31 pennies. Then 
place these bags and stragglers on the mat again, and ask them 
how many pennies there are. It won’t take long for them to figure 
out that there are 4 + 3 bags of 10, and 5 + 1 stragglers.

They will figure out that 7 bags of 10 together with 6 stragglers 
total 76 again. Now ask them to compare counting the bags and 
stragglers with the magic you performed just a minute ago. If they 
don’t see the connection (and some won’t), patiently explain it to 
them. Of course, this is the time to review place value. (To better 
understand place value, and to prepare for the occasional 
advanced student, see the sidebar on page 9.) Then, you can use 
place value to explain that when they add the 4 bags of 10 to the 3 
bags of 10, they are actually adding 40 and 30.

 

45
+ 31

76 
→

40 + 5
+ 30 + 1

?     ?
→

40 + 5
+ 30 + 1

70 + 6
→

    45
+ 31
    76

Now, they will listen more carefully to your incantations of place 
value because you have given them more incentive to learn about 
this important topic.

As mentioned above, addition of whole numbers is done 
mainly in grades 2 and 3. Often, the addition algorithm is taught 
by rote, but some teachers do manage to explain it in terms of 
place value, as we have just done. Many educators believe that the 
real difficulty of this algorithm arises when “carrying” is neces-
sary, but conceptually, carrying is just a sidelight, a little wrinkle 
on the fabric. The key idea is contained in the case of adding with-
out carrying. If we succeed in getting students to thoroughly 
understand addition without carrying, then they will be in an 
excellent position to handle carrying too. (However, in my experi-
ence, the standard textbooks and teaching in most second- or 
third-grade classrooms focus on carrying before students are 
ready, and that is a pity.)

All whole-number computations are 
nothing but a sequence of single-digit 
computations artfully put together. This  
is the kind of thinking students will need 
to succeed in algebra and advanced 
mathematics. 
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Understanding the addition algorithm in terms of place value—
for example, that 45 + 31 is 40 + 30 and 5 + 1—is appropriate for 
beginners, but it cannot stop there. The essence of the addition 
algorithm, like all standard algorithms, lies in the abstract under-
standing that the arithmetic computations with whole numbers, 
no matter how large, can all be reduced to computations with 
single-digit numbers. (For more on this, see the sidebar on page 
10.) In other words, students’ ultimate understanding of these 
algorithms must transcend place value to arrive at the recognition 
that all whole-number computations are nothing but a sequence 
of single-digit computations artfully put together. This is the kind 
of thinking students will need to succeed in algebra and advanced 
mathematics. More precisely, students should get to the point of 
recognizing that 45 + 31 is no more than the combination of two 
single-digit computations, 4 + 3 and 5 + 1. Whether the 4 stands 
for 40 or 40,000 and the 3 stands for 30 or 30,000 is completely 
irrelevant.

To drive home this point, consider the following two addition 
problems.

 

45
+ 31

76 

45723
+ 31251

76974

The problem on the left is the one we have been working with, and 
parts of the problem on the right are tantalizingly similar, except 
that the 4 and 5 in the first row are no longer 40 and 5 but 40,000 
and 5,000, respectively. Similarly, the 3 and 1 in the second row 
are not 30 and 1 but 30,000 and 1,000, respectively. Yet, do the 
changes in the place values of these four single-digit numbers (4, 
5, 3, and 1) change the addition? Not at all, because the result is 
still the same two digits, 7 and 6, and that is the point. 

We are now able to directly address the main concern of this 
article, which is the need for math teachers at least starting in 
grade 4. In grade 4, the multiplication algorithm has to be 
explained. A teacher knowledgeable in mathematics would know 
that this is the time to cast a backward glance at the addition algo-
rithm to make sure students finally grasp a real understanding of 
what this algorithm is all about: just a sequence of single-digit 
computations. Why is this knowledge so critical at this point? 
Because it leads seamlessly to the explanation of why students 
must memorize the multiplication table (of single-digit numbers) 
to automaticity before they do multidigit multiplication: in the 
same way that knowing how to add single-digit numbers enables 
them to add any two numbers, no matter how large, knowing how 
to multiply single-digit numbers enables them to multiply any 
two numbers, no matter how large. We want students to be 
exposed, as early as possible, to the idea that beyond the nuts and 
bolts of mathematics, there are unifying undercurrents that con-
nect disparate pieces.

Let us go a step further to make explicit the role of single-digit 
computations in the additions of 45 + 31 and 45723 + 31251. If 
students have been given the proper foundation in second grade, 
then in fourth grade, a math teacher will be able to give the fol-
lowing explanation.

            

45 + 31  = (4 × 10) + 5 + (3 × 10) + 1
  = (4 × 10) + (3 × 10) + 5 + 1
  = (4 + 3) × 10 + (5 + 1)

In the last equality, we used the distributive law—i.e., (b + c)a = 
ba + ca—to rewrite (4 × 10) + (3 × 10) as (4 + 3) × 10. For 45723 + 

31251, we will focus only on 45 and 31 to enhance clarity. We have, 
then, the following.
 

     

45723 + 31251 = (4 × 10000) + (5 × 1000) + …

     + (3 × 10000) + (1 × 1000) + …

 = (4 × 10000) + (3 × 10000) + …

            + (5 × 1000) + (1 × 1000) + …

 = (4 + 3) × 10000 + (5 + 1) × 1000 + …

Again, the last equality makes use of the distributive law. If we 
compare the two expressions (4 + 3) × 10 + (5 + 1) and (4 + 3) × 
10000 + (5 + 1) × 1000, we see clearly that the same single-digit 
additions (4 + 3) and (5 + 1) are in both of them, and that the dif-
ference between these expressions lies merely in whether these 
single-digit sums are multiplied by 10 or 1,000 or 10,000, the place 
values of the respective digits. This clearly illustrates the primacy 
of single-digit computations in the addition algorithm.

Returning to our original second-grade lesson of 45 + 31, let’s 
review what you have accomplished. You have 
shown students what addition means; this is 
important because we want to promote 
the good practice among students 
that through precise defini-
tions, they get to know 
what they will do before 
doing it .  Then you 
made them want to 
learn it,  and made 
them realize that the 
most obvious method 
(counting) is not the 
easiest. Best of all, you 
opened their eyes to the 
magic of learning: acquiring 
the power of making something complicated much simpler. 
Instead of tedious, error-prone counting, you used the concept of 
place value to introduce the idea of breaking up a task digit by digit 
and adding only two single-digit numbers in succession. A couple 
of years later, the fourth-grade math teacher will have the oppor-
tunity to explain and make explicit the idea that to add any whole 
numbers, no matter how large, all the children need to do is add 
single-digit numbers.

The main goal of the elementary mathematics curriculum is to 
provide children with a good foundation for mathematics. In this 
context, the addition algorithm, when taught as described above 
in grades 2–4, serves as a splendid introduction. It teaches chil-
dren an important skill in mathematics: if possible, always break 
up a complicated task into a sequence of simple ones. This is why 
we do not look at 45 and 31, but only 4 and 3, and 5 and 1.

Of course, they will encounter somewhere down the road 
something like 45 + 37, but they will be in a position to under-
stand that the carrying step is actually adding a 1 to the 10s col-
umn. Despite how it is presented in most U.S. textbooks, carrying 
is not the main idea of the addition algorithm. The main idea is 
to break up any addition into the additions of single-digit num-
bers and then, drawing on our understanding of place value, put 
these simple computations together to get the final answer. If 
you can make your students understand that, you are doing fan-
tastically well as a teacher, because you have taught them impor-
tant mathematics. They now have an important skill and know 
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the reasoning behind it—and they will have used both to deepen 
their appreciation of place value.

Dividing fractions
I’ve had plenty of encounters with well-educated adults who can’t 
divide fractions without a calculator, or who can, but have no idea 
why the old rule “invert and multiply” works. With that in mind, 
I’ll break this topic into three parts: we’ll review division, then 
fractions, and finally the division of fractions. Along the way, the 
answer to our larger question—what’s sophisticated about ele-
mentary mathematics?—will become apparent, as will the ways 
in which mastering fractions prepares students for algebra.

Let’s begin with the division of whole numbers, which would 

normally be taught in third grade. What does 24/6 = 4 
mean? In the primary grades, we teach two meanings of 
division of whole numbers: partitive division* and mea-

surement division. For brevity, let us concentrate only on mea-
surement division, in which the meaning of 24/6 = 4 is that by sepa-
rating 24 into equal groups of 6, we find that there are 4 groups in 
all. So the quotient 4 tells how many groups of 6s there are in 24. 

By fifth grade, students should be ready to apply their under-
standing of measurement division to a more symbolic format. This 
will prepare them for the division of fractions, for which the idea of 
“dividing into equal groups” often is not very helpful in calculating 
answers. (For example, the division of ¹⁄₇ by ¹⁄₂ does not lend itself 
to any easy interpretation of dividing ¹⁄₇ into equal groups of ¹⁄₂. 
Being able to draw or visualize where ¹⁄₇ and ¹⁄₂ fall on the number 
line is helpful in estimating the answer, but not in arriving at the 
precise answer, ²⁄₇.) Any understanding of fraction division, there-
fore, has to start from a more abstract level. With this in mind, we 
express the separation of 24 objects into 4 groups of 6s symbolically 
as 24 = 6 + 6 + 6 + 6, which is, of course, equal to 4 × 6, by the very 
definition of whole-number multiplication. Thus, the division state-
ment 24/6 = 4 implies the multiplication statement 24 = 4 × 6. 

At this point, we must investigate whether the multiplication 
statement 24 = 4 × 6 captures all of the information in the division 
statement 24/6 = 4. It does, because if we know 24 = 4 × 6, then we 
know 24 = 6 + 6 + 6 + 6, and therefore 24 can be separated into 4 
groups of 6s. By the measurement meaning of division, this says 
24/6 = 4. Consequently, the multiplication statement 24 = 4 × 6 
carries exactly the same information as the division statement 
24/6 = 4. Put another way, the meaning of 24/6 = 4 is 24 = 4 × 6. 
This is the symbolic reformulation of the concept of division of 
whole numbers that we seek. 

This meaning of division is actually very clear from the stan-

dard algorithm for long division, as shown in the following 
example.

     4
6 ) 24

–24
0

What we tell children is that to divide 24 by 6, we look for the 
number which, when multiplied by 6, gives 24. (Of course, chil-
dren who have memorized the multiplication table of single-digit 
numbers will do this easily; those who haven’t will struggle.)

In a similar fashion, the meaning of 36/12 = 3 is that  
36 = 3 × 12, and the meaning of 252/9 = 28 is that 252 = 28 × 9, etc. 

There is a subtle point here that is usually slurred over in 
the upper elementary grades but should be pointed out: 
in our examples, the dividend (be it 24, 36, or 252) is a 
multiple of the divisor, since otherwise the quotient can-
not be a whole number. That said, now we can use abstract 
symbols† to express this new understanding of the division 
of whole numbers as follows: for whole numbers m and 
n, where m is a multiple of n and n is nonzero, the mean-
ing of the division m/n = q is that m = q × n.

Beginning in fifth grade, we should teach students to 
reconceptualize division from this point of view. Their 

math teachers should help them revisit division from the perspec-
tive of this new knowledge and reshape their thinking accordingly. 
Such is the normal progression of learning.

Note that this reconceptualization is not a rejection of students’ 
understanding of the division of whole numbers in their earlier 
grades. On the contrary, it evolves from that understanding and 
makes it more precise. This reconceptualization is important 
because the meaning of division, when reformulated this way, 
turns out to be universal in mathematics, in the following sense: 
if m and n are any two numbers (i.e., not just whole numbers) and 
n is nonzero, then the definition of “m divided by n equals q” is 
that m = q × n. In other words, m/n = q means m = q × n.

We now turn to fractions, a main source of math pho-
bia. In the early grades, grades 2–4 more or less, 
students mainly acquire the vocabulary of frac-
tions and use it for descriptive purposes (e.g., ¹⁄₄ of 

a pie). It is only in grades 5 and up that serious learning of the 
mathematics of fractions takes place—and that’s when students’ 
fear of fractions sets in.

From a curricular perspective, this fear can be traced to at least 
two sources. The first is the loss of a natural reference point when 
students work with fractions. In learning to deal with the math-
ematics of whole numbers in grades 1–4, children always have a 
natural reference point: their fingers. But for fractions, the cur-
ricular decision in the United States has been to use a pizza or a 
pie as the reference point. Unfortunately, while pies may be useful 
in the lower grades, they are an awkward model for fractions big-
ger than 1 or for any arithmetic operations with fractions. For 
example, how do you multiply two pieces of pie or use a pie to 
solve speed or ratio problems? 

A second source of the fear of fractions is the inherently abstract 

*An example of partitive division is to put 24 items in 6 bags (each with an equal 
number of items), and find that each bag has 4 items.

†This definitely would be appropriate for fifth-graders once the idea of using symbols 
for abbreviations is introduced and many examples are given for illustration.

We want students to be exposed, as early 
as possible, to the idea that beyond the 
nuts and bolts of mathematics, there are 

unifying undercurrents that connect  
disparate pieces.
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nature of the concept of a fraction. Whereas students’ intuition of 
whole numbers can be grounded in counting their fingers, learning 
fractions requires a mental substitute for their fingers. By its very 
nature, this mental substitute has to be abstract because most frac-
tions (e.g., ¹⁹⁄₁₃ or ²⁵¹⁄₆₀₄) tend not to show up in the real world. 

Because fractions are students’ first serious excursion into 
abstraction,* understanding fractions is the most critical step in 
understanding rational numbers† and in preparing for algebra. In 
order to learn fractions, students need to know what a fraction is. 
Typically, our present math education lets them down at this criti-
cal juncture. All too often, instead of providing guidance for stu-
dents’ first steps in the realm of abstraction, we try in every con-
ceivable way to ignore this need and pretend that there is no 

abstraction. When asked, what is a fraction?, we say it is just some-
thing concrete, like a slice of pizza. And when this doesn’t work, 
we continue to skirt the question by offering more metaphors and 
more analogies: What about a fraction as “part of a whole”? As 
another way to write division problems? As an “expression” of the 
form m/n for whole numbers m and n (n > 0)? As another way to 
write ratios? These analogies and metaphors simply don’t cut it. 
Fractions have to be numbers because we will add, subtract, mul-
tiply, and divide them.

What does work well for showing students what fractions really 
are? The number line. In the same way that fingers serve as a natu-
ral reference point for whole numbers, the number line serves as 
a natural reference point for fractions.‡ The use of the number line 
has the immediate advantage of conferring coherence on the 
study of numbers in school mathematics: a number is now defined 
unambiguously to be a point on the number line.§ In particular, 
regardless of whether a number is a whole number, a fraction, a 
rational number, or an irrational number, it takes up its natural 
place on this line. (For the definition of fractions, including how 
to find them on the number line, see the sidebar on page 12.)

Now, let’s describe the collection of numbers called fractions. 
Divide a line segment from 0 to 1 into, let’s say, 3 segments of equal 
length; do the same to all the segments between any two consecu-
tive whole numbers. These division points together with the whole 
numbers then form a sequence of equal-spaced points. These are 

the fractions with denominators equal to 3: the first division point 
to the right of 0 is what is called ¹⁄₃, and the succeeding points of 
the sequence are then ²⁄₃, ³⁄₃, ⁴⁄₃, etc. The same is true for ¹⁄ⁿ, ²⁄ⁿ, ³⁄ⁿ, 
etc., for any nonzero whole number n. Thus, whole numbers 
clearly fall within the collection of numbers called fractions. If we 
reflect the fractions to the left of 0 on the number line, the mirror 
image of the fraction m/ⁿ is by definition the negative fraction  
– m/ⁿ. Therefore, positive and negative fractions are now just 
points on the number line. Most students would find marking off 
a point ¹⁄₂ of a unit to the left of 0 to be much less confusing than 
contemplating a negative ¹⁄₂ piece of pie.

The number line is especially helpful in teaching students 
about the theorem on equivalent fractions, the single most impor-
tant fact in the subject. To state it formally, for all whole numbers 
k, m, and n (where k ≠ 0 and n ≠ 0), m/ⁿ = km/kⁿ. In other words, 
m/ⁿ and km/kⁿ represent the same point on the number line. Let 
us consider an example to get a better idea: suppose m = 4, n = 3, 
and k = 5. Then the theorem asserts that

         
4 = 5 × 4 
3      5 × 3

and, of course,   5 × 4 = 20 . 
5 × 3      15

The number line makes the equality clear. To see how ⁴⁄₃ equals 
²⁰⁄₁₅, draw a number line and divide the space between 0 and 1, as 
well as between 1 and 2, into three equal parts. Count up to the 
4th point on the sequence of thirds—that’s ⁴⁄₃. Then take each of 
the thirds and divide them into 5 equal parts (an easy way to make 
15ths). Count up until you get to the 20th point on the sequence 
of 15ths—that’s ²⁰⁄₁₅, and it’s in the same spot as ⁴⁄₃.

            

0                   1
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
              ⅓           ⅔            ₃⁄₃           ₄⁄₃
             ₅⁄1₅         10⁄1₅       15⁄1₅        20⁄1₅

The use of the number line has another advantage. Having 
whole numbers displayed as part of fractions allows us to see more 
clearly that the arithmetic of fractions is entirely analogous to the 
arithmetic of whole numbers. For example, in terms of the num-
ber line, 4 + 6 is just the total length of the concatenation (i.e., 
linking) of a segment of length 4 and a segment of length 6.

            
|                              |                                            |            
 4 6 

Then in the same way, we define ¹⁄₆ + ¹⁄₄ to be the total length of 
the concatenation of a segment of length ¹⁄₆ and a segment of 
length ¹⁄₄ (not shown in proportion with respect to the preceding 
number line).

            
|                              |                                            |            
 1∕6 1∕4 

We arrive at ¹⁄₆ + ¹⁄₄ = ¹⁰⁄₂₄ as we would if we were adding whole 
numbers, as follows. Using the theorem on equivalent fractions, 
we can express ¹⁄₆ and ¹⁄₄ as fractions with the same denominator: 
¹⁄₆ = ⁴⁄₂₄ and ¹⁄₄ = ⁶⁄₂₄. The segment of length ¹⁄₆ is therefore the 
concatenation of 4 segments each of length ¹⁄₂₄, and the segment 
of length ¹⁄₄ is the concatenation of 6 segments each of length ¹⁄₂₄. 
The preceding concatenated segment is therefore the concatena-
tion of (4 + 6) segments each of length ¹⁄₂₄, i.e., ¹⁰⁄₂₄.** In this way, 

Because fractions are students’ first serious 
excursion into abstraction, understanding 
fractions is the most critical step in preparing 
for algebra.

*Very large numbers are already an abstraction to children, but children tend not to 
be systematically exposed to such numbers the way they are to fractions.
†Rational numbers consist of fractions and negative fractions, which of course include 
whole numbers.
‡See, for example, page 4-40 of the National Mathematics Advisory Panel’s “Report 
of the Task Group on Learning Processes,” www.ed.gov/about/bdscomm/list/math 
panel/report/learning-processes.pdf.
§We exclude complex numbers from this discussion, as they are not appropriate for 
the elementary grades.

**Naturally, the theorem on equivalent fractions implies that 10/24 = 5/12, as  
10/24 = (2 × 5)/(2 × 12), but contrary to common belief, the simplification is of no 
great importance. Notice in particular that there was never any mention of the  
“least common denominator.”

(Continued on page 10)
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Many teachers, rightly in my opinion, believe place value is the 
foundation of elementary mathematics. It is often taught well, 
using manipulatives such as base-10 blocks to help children grasp 
that, for example, the 4 in 45 is actually 40 and the 3 in 345 is 
actually 300.

But despite the importance of place value, the rationale 
behind it usually is not taught in colleges of education or in math 
professional development. That’s probably because 
the deeper explanation is not appropriate for 
most students in the first and second grades, 
which is when place value is emphasized. But it is 
appropriate for upper-elementary students who 
are exploring number systems that are not base 10 
(which often is done, without enough explana-
tion, through games)—and it is certainly some-
thing that math teachers should know. So here it 
is: the sophisticated side of the simple idea of 
place value.

Let’s begin with a look at the basis of our 
so-called Hindu-Arabic numeral system.* The most 
basic function of a numeral system is the ability to 
count to any number, no matter how large. One 
way to achieve this goal is simply to make up 
symbols to stand for larger and larger numbers as 
we go along. Unfortunately, such a system 
requires memorizing too many symbols, and 
makes devising a simple method of computation 
impossible. The overriding feature of the Hindu-
Arabic numeral system, which will be our exclusive 
concern from now on, is the fact that it limits itself 
to using exactly ten symbols—0, 1, 2, 3, 4, 5, 6, 7, 
8, 9—to do all the counting.† Let us see, for 
example, how “counting nine times” is repre-
sented by 9. Starting with 0, we go nine steps and 
land at 9, as shown below.

0 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9

But, if we want to count one more time beyond the 
ninth (i.e., ten times), we would need another symbol. 
Since we are restricted to the use of only these ten symbols, 
someone long ago got the idea of placing these same ten 
symbols next to each other to create more symbols. 

The most obvious way to continue the counting is, of course, 
to simply recycle the same ten symbols over and over again, 
placing them in successive rows, as follows.

0 1 2 3 4 5 6 7 8 9 
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
.     .     .     .     .
.     .     .     .     .
.     .     .     .     .

In this scheme, counting nine times lands us at the 9 of the first 
row, and counting one more time would land us at the 0 of the 
second row. If we want to continue counting, then the next step 
lands us at the 1 of the second row, and then the 2 of the second 
row, and so on.

However, this way of counting obviously suffers from the 
defect of ambiguity: there is no way to differentiate the first row 

from the second row so that, for example, going both 
two steps and twelve steps from the first 0 will 

land us at the symbol 2. The central break-
through of the Hindu-Arabic numeral system is 
to distinguish these rows from each other by 
placing the first symbol (0) to the left of all the 
symbols in the first row, the second symbol (1) 

to the left of all the symbols in the second row, 
the third symbol (2) to the left of all the symbols in 

the third row, etc.

00  01  02  03  04  05  06  07  08  09
10  11  12  13  14  15  16  17  18  19
20  21  22  23  24  25  26  27  28  29
30  31  32  33  34  35  36  37  38  39
 .           .           .           .           .
 .           .           .           .           .
 .           .           .           .           .
90  91  92  93  94  95  96  97  98  99

Now, the tenth step of counting lands us at 10, the 
eleventh step at 11, etc. Likewise, the twentieth step 
lands us at 20, the twenty-sixth step at 26, the 
thirty-first step at 31, etc. By tradition, we omit the 0s 
to the left of each symbol in the first row. That done, 
we have re-created the usual ninety-nine counting 
numbers from 1 to 99. 

We now see why the 2 to the left of the symbols 
on the third row stands for 20 and not 2, because the 
2 on the left signifies that these are numbers on the 

third row, and we get to them only after we 
have counted 20 steps from 0. Similarly, we 

know 31 is on the fourth row because the 
3 on the left carries this 

information; after 
counting thirty steps 
from 0 we land at 30, 

and one more step 
lands us at 31. So the 3 of 

31 signifies 30, and the 1 signifies one more step beyond 30. 
With a trifle more effort, we can 

carry on the same discussion to 
three-digit numbers (or more). The 
moral of the story is that place 
value is the natural consequence 
of the way counting is done in the 
decimal numeral system.

For a fuller discussion, including 
numbers in arbitrary base, see 
pages 7–9 of The Mathematics 
K–12 Teachers Need to Know on 
my Web site at http://math.
berkeley.edu/~wu/School 
mathematics1.pdf.

–H.W.

Understanding Place Value

*This term is historically correct in the sense that the Hindu-Arabic numeral system 
was transmitted to the West from the Islamic Empire around the 12th century, and 
the Arabs themselves got it from the Hindus around the 8th century. However, recent 
research suggests a strong possibility that the Hindus, in turn, got it from the Chinese, 
who have had a decimal place-value system since time immemorial. See Lay Yong 
Lam and Tian Se Ang, Fleeting Footsteps: Tracing the Conception of Arithmetic and 
Algebra in Ancient China (Hackensack, NJ: World Scientific, 1992).

†Historically, 0 was not among the symbols used. The emergence of 0 (around the 9th 
century and beyond) is too complicated to recount here.
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students get to see that fractions are the natural extension of whole 
numbers and not some confusing new thing. This realization 
smoothes the transition from computing with whole numbers to 
computing with fractions.

Hopefully this discussion has smoothed the transition 
for you too, because it’s time for us to skip ahead to 
sixth grade and tackle division with fractions. Having 
learned to add, subtract, and multiply with fractions, 

students should be comfortable with fractions as numbers (just 
like whole numbers). So, their learning to divide with fractions 

can make use of the same scaffolding as learning to divide with 
whole numbers; students proceed from the simple to the com-
plex. For example, a simple problem like ¹⁄₂ ÷ ¹⁄₄ = 2 could be taught 
using the measurement definition of division and showing stu-
dents on the number line that ¹⁄₄ appears twice in ¹⁄₂. That’s fine 
as an introduction, but ultimately, in order to prepare for more 
advanced mathematics, students must grasp a more abstract—
and precise—definition of division with fractions. They must be 
able to answer the following question:

             Why does  5     9  equal  5 × 4
6     4             6     9

?

In other words, why invert and multiply? To give an explanation, 

In the context of school mathematics, an algorithm is a finite 
sequence of explicitly defined, step-by-step computational 
procedures that end in a clearly defined outcome. The so-called 
standard algorithms for the four arithmetic operations with 
whole numbers are perhaps the best known algorithms.

At the outset, we should make clear that there is no such 
thing as the unique standard algorithm for any of the four 
operations +, −, ×, or ÷, because minor variations have been 
incorporated into the algorithms by various countries and ethnic 
groups. Such variations notwithstanding, the algorithms provide 
shortcuts to what would otherwise be labor-intensive computa-
tions, while the underlying mathematical ideas always remain 
the same. Therefore, from a mathematical perspective, the label 
“standard algorithms” is justified.

While it is easy to see why these algorithms were of interest 
before calculators became widespread, a natural question now 
is why we should bother to teach them. There are at least two 
reasons. First, without a firm grasp of place value and of the 
logical underpinnings of the algorithms, it would be impossible 
to detect mistakes caused by pushing the wrong buttons on a 
calculator. A more important reason is that, in mathematics, 
learning is not complete until we know both the facts and their 
underlying reasons. For the case at hand, learning the explana-
tions for these algorithms is a very compelling way to acquire 
many of the basic skills as well as the abstract reasoning that 
are integral to mathematics. Both these skills and the capacity 
for abstract reasoning are absolutely essential for understand-
ing fractions, decimals, and, therefore, algebra in middle 
school. One can flatly state that if students do not feel comfort-
able with the mathematical reasoning used to justify the 
standard algorithms for whole numbers, then their chances of 
success in algebra are exceedingly small.

These algorithms also highlight one of the basic tools used 
by research mathematicians and scientists: namely, that 
whenever possible, one should break down a complicated task 
into simple subtasks. To be specific, the leitmotif of the 
standard algorithms is as follows: to perform a computation 
with multidigit numbers, break it down into several steps so 
that each step (when suitably interpreted) is a computation 
involving only single-digit numbers. Therefore, a virtue of the 
standard algorithms is that, when properly executed, they 
allow students to ignore the actual numbers being computed, 
no matter how large, and concentrate instead on single digits. 

This is an excellent 
example of the kind of 
abstract thinking that is 
critical to success in 
mathematics learning. 

Building on the 
discussion of the addition 
algorithm given in the 
main article, we can 
further illustrate this leitmotif 
with the multiplication algo-
rithm. In this case, let us assume 
that students already know the meaning of multiplication as 
repeated addition. The next step toward understanding 
multiplication requires that they know the multiplication table 
by heart—i.e., that they know the multiplication of single-digit 
numbers to automaticity. We now show, precisely, how this 
knowledge allows them to compute the product 257 × 48. First, 
observe that 257 = (2 × 100) + (5 × 10) + 7, so that by the 
distributive law [i.e., a(b + c) = ab + ac]:

257 × 4 = (2 × 4) × 100 + (5 × 4) × 10 + (7 × 4) and  
257 × 8 = (2 × 8) × 100 + (5 × 8) × 10 + (7 × 8).

Since they already know the single-digit products (2 × 4),  
(5 × 4), (7 × 4), (2 × 8), (5 × 8), and (7 × 8), and they know how 
to add, they can compute 257 × 4 and 257 × 8. Such being the 
case, we further note that 48 = (4 × 10) + 8, so that again by 
the distributive law:

257 × 48 = (257 × 4) × 10 + (257 × 8).

The right side being something they already know how to 
compute, they have therefore succeeded in computing 257 × 48 
starting with a knowledge of the multiplication table. (For lack 
of space, we omit the actual writing out of the multiplication 
algorithm.) 

Although the case of the long-division algorithm is more 
sophisticated, the basic principle is the same: it is just a 
sequence of single-digit computations. 

For further details on the standard algorithms, see pages 
38–90 of the first chapter of a professional development text 
for teachers that I am currently writing, available at http://
math.berkeley.edu/~wu/EMI1c.pdf.

–H.W.

Teaching the Standard Algorithms

(Continued from page 8)
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we have to ask what it means to divide fractions in the first place. 
The fact that if we do not specify the meaning of dividing fractions, 
then we cannot possibly get a formula for it should be totally obvi-
ous, yet this fact is not common knowledge in mathematics edu-
cation. For such a definition, let us go back to the concept of divi-
sion for whole numbers. Recall that in the case of whole numbers, 
having a clearly understood meaning for multiplication (as 
repeated addition) and division (as measurement division) 
allowed us to conclude that the meaning of the division statement 
m/n = q for whole numbers m, n, and q (n > 0) is inherent in the 
multiplication statement m = q × n. But now we are dealing with 
fractions, and the situation is different. To keep this article from 
becoming too long, let’s assume that we already know how to 
multiply fractions,* but we are still searching for the meaning of 
fraction division. Knowing that fractions and whole numbers are 
on the same footing as numbers, it would be a reasonable working 
hypothesis that if m/n = q means m = q × n for whole numbers m, 
n, and q, then the direct counterpart of this assertion in fractions 
should continue to hold. Now, if M, N, and Q are fractions (N > 0), 
we do not as yet know what M/N = Q means, although we know 
the meaning of M = Q × N because we know how to multiply frac-
tions. Therefore, the only way to make this “direct counterpart” in 
fractions come true is to use it as a definition of fraction division. 
In other words, we adopt the following definition: for fractions M 
and N (N > 0), the division of M by N, written M/N, is the fraction 
Q, so that M = Q × N. 

We’ll get acquainted with this definition by looking at a special 
case. Suppose 

            
5     9  = Q for a fraction Q. 
6     4          

What could Q be? By definition, this Q must satisfy ⁵⁄₆ = Q × ⁹⁄₄. 
Now, recalling that m/ⁿ = km/kⁿ (the theorem on equivalent frac-
tions), we use this fact to find Q by multiplying both sides of ⁵⁄₆ = 
Q × ⁹⁄₄  by ⁴⁄₉. 

            

5  × (4) = Q  ×  9  ×  (4)  6       9               4        9                 

               =  Q  ×  (9 × 4)  
                       (4 × 9)
               =  Q  ×  1  = Q   

This is the same as ⁵⁄₆ × ⁴⁄₉ = Q. We can easily check that, indeed, 
this Q satisfies ⁵⁄₆ = Q × ⁹⁄₄. So, we see that

            
5     9  =  5 × 4
6     4      6     9

and we have verified the invert-and-multiply rule in this special 
case. But the reasoning is perfectly general, and it verifies in 
exactly the same way that for a nonzero fraction c/d, if (a/b)/(c/d) 
is equal to a fraction Q, then Q is equal to (a/b) × (d/c). Therefore, 
the invert-and-multiply rule is always correct.

We have been staring at the concept of the division of fractions 
for quite a while, and we seem to be getting there because we 
have explained the invert-and-multiply rule. Therefore, it may be 
a little deflating to say that although we are getting very close, we 
are not quite there yet. There is a subtle point about the definition 
of fraction division that is still unsettled. This is something one 

should probably not bring up in a sixth-grade classroom, but 
which is, nevertheless, something a math teacher should be 
aware of. The question is whether, for arbitrary fractions M and 
N (N > 0), we can always divide M by N—i.e., whether there is 
always a fraction Q so that M = Q × N. The answer, of course, is 
yes: if M = a/b and N = c/d, then Q = (a/b) × (d/c) would do. So the 
upshot of all this is that we can always divide a fraction M by a 
nonzero fraction N, and the quotient, to be denoted by M/N, is 
the fraction obtained by the invert-and-multiply rule.

Once we know the meaning of division, we see there is nothing 
to the procedure of invert and multiply. What is sobering is that 
the rhyme, “Ours is not to reason why; just invert and multiply,” 
gets it all wrong. With a precise, well-reasoned definition, there is 

no need to wonder why—the answer is clear. Thus, we return to 
our earlier theme: before we do anything in mathematics, we must 
make clear what it is we are doing. In other words, we must have 
a precise definition of division before we can talk about its proper-
ties. (And we must have a precise definition of fractions before we 
can expect students to do anything with them.)

But one question remains: if division is just multiplication in 
a different format, why do we need division at all? The correct 
answer is that certain situations in life require it. An example of 
such a problem is the following:

A 5-yard ribbon is cut into pieces that are each ³⁄₄ yard long 
to make bows. How many bows can be made?

Students usually recognize by rote that this problem calls for a 
division of 5 by ³⁄₄, but not the reason why division should be used. 
To better understand the reason for dividing, suppose the prob-
lem reads, instead, “A 30-yard ribbon is cut into pieces that are 
each 5 yards long. How many pieces can be made?” It would fol-
low from the measurement interpretation of the division of whole 
numbers that the answer is 30/5 = 6 pieces—i.e., there are six 5s 
in 30. The use of division for this purpose is well understood. 

However, we are now dealing with pieces whose common 
length is a fraction ³⁄₄, and the reason for solving the problem by 
dividing 5 by ³⁄₄ is more problematic for many students. But if we 
use the preceding definition of division, the reason emerges with 
clarity. Suppose Q bows can be made from the ribbon. Here Q 
could be a fraction, and the meaning of “Q bows” can be explained 
by using an explicit example. If Q = 6 ²⁄₃, for example, then “6 ²⁄₃ 
bows” means 6 pieces that are each ³⁄₄ yard long, plus a piece that 
is the length of 2 parts when the ³⁄₄ yard is divided into 3 parts of 
equal length. If multiplication is taught correctly, so that the mul-
tiplication of two fractions is defined clearly, one can then explain 
why Q bows, no matter what fraction Q is, have a total length of Q 
× ³⁄₄ yards. Therefore, if Q bows can be made from 5 yards of rib-

The rhyme, “Ours is not to reason why;  
just invert and multiply,” gets it all wrong. 
With a precise, well-reasoned definition, 
there is no need to wonder why—the 
answer is clear.

*The treatment of fraction multiplication in textbooks and in the education literature 
is mostly defective, but one can consult pages 62–74 of http://math.berkeley.edu/~wu 
/EMI2a.pdf for an introduction.
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bon, then 5 = Q × ³⁄₄. By the definition of fraction division, this is 
exactly the statement that

            
 5  = Q.  
³⁄₄

This is the reason why division should still be used to solve this 
problem. Incidentally, the invert-and-multiply rule immediately 
leads to Q = ²⁰⁄₃, which equals 6 ²⁄₃ pieces. In greater detail, that’s 
6 pieces and a leftover piece that is the length of 2 parts when ³⁄₄ 
yard is divided into 3 equal parts.

The Bigger Picture
At this point, I hope you can see that there’s more to teaching 
elementary mathematics than is initially apparent. The fact is, 
there’s much more to it than could possibly be covered in an 
article. But allow me to give you a glimpse of the bigger picture—of 
what elementary mathematics is really all about. I’ll conclude with 
some of the latest thinking on the subject, thinking that points to 
mathematics teachers in the upper elementary grades being our 
best hope for providing all students the sound mathematics foun-
dation they need.

Mathematics in elementary school is the foundation of all of 
K–12 mathematics and beyond. Therefore, to prepare students for 

all that is to come, it must, in a grade-appropriate manner, respect 
the basic characteristics of mathematics. What does this mean? 
To answer this question, we have to remember that the school 
mathematics curriculum, beginning with approximately grade 5, 
becomes increasingly engaged in abstraction and generality. It 
will no longer be about how to deal with a finite collection of num-
bers (such as, ¹⁄₂ × (27−11) + 56 = ?), but rather about what to do 
with an infinite collection of numbers all at once (such as, is it true 
that x⁴ + y⁴ = (x² + y² + √−2 xy)(x² + y² − √−2 xy) for all numbers x and 
y?). The progression of the topics, from fractions to negative frac-
tions, and on to algebra, Euclidean geometry, trigonometry, and 
precalculus, gives a good indication that to learn mathematics, a 
student gradually must learn to cope with abstract concepts and 
precise reasoning, and must acquire a coherent overview of topics 
that are, cognitively, increasingly complex and diverse. For this 
reason, students in the upper elementary grades must be pre-
pared for the tasks ahead by being slowly acclimatized to coher-
ence, precision, and reasoning, although always in a way that is 
grade appropriate. Allow me to amplify each of these character-
istics below.

Coherence: If you dig beneath the surface, you will find that the 

The precise definition of a fraction as a point on the number 
line is a refinement of, not a radical deviation from, the usual 
concept of a fraction as a “part of a whole.” As I will explain, 
this refinement produces increased simplicity, flexibility, and 
precision.

Let us begin with a line, which is usually taken to be a 
horizontal one, and fix two points on it. The one on the left will 
be denoted by 0, and the one on the right by 1. (Because we will 
not take up negative numbers, our discussion will focus entirely 
on the half-line to the right of 0.) Now as we move from 0 to the 
right, we mark off successive points, each of which is as far apart 
from its neighbors as 1 is from 0 (like a ruler). Label these points 
by the whole numbers 0, 1, 2, 3, etc.

0               1                2               3       etc.
|                 |                 |                 |

We begin with an informal discussion. If we adopt the usual 
approach to fractions, the “whole” would be taken to be the 
segment from 0 to 1, called the unit segment, to be denoted by 
[0, 1]. The number 1 is called the unit. Then a fraction such as ¹⁄₃ 
would be, by common consent, 1 part when the whole [0, 1] is 
divided into 3 equal parts. So far so good. But if we try to press 
forward with mathematics, we immediately run into trouble 
because a fraction is a number—not a shape or a geometric 
figure. The unit segment [0, 1] therefore cannot be the whole. 
The language of “equal parts” is also problematic because in 
anything other than line segments, it usually is not clear what 
“equal parts” means. For example, if the whole is a ham, does 
“equal parts” mean parts with equal weights, equal lengths, 
equal amounts of meat, equal amounts of bones, etc.? So, we 
are forced to introduce more precision into our discussion in 

order to avoid 
misunderstanding. 
What we should 
specify, instead, is 
that the whole is 
the length of the 
unit segment [0, 1], 
rather than the 
segment itself. When we say 
[0, 1] is divided into “equal 
parts,” what we should say is 
that [0, 1] is divided into 
segments of equal length. The 
fraction ¹⁄₃ therefore would be the length of 
any segment so that three segments of the same length, when 
pieced together, form a segment of length 1. Since all segments 
between consecutive whole numbers have length 1, when we 
likewise divide each of the segments between consecutive 
whole numbers into 3 segments of equal length, the length of 
each of these shorter segments is also ¹⁄₃. In particular, each of 
the following thickened segments has length ¹⁄₃ and is therefore 
a legitimate representation of ¹⁄₃.

  

0               1                2               3       etc.
|     |     |     |     |     |     |     |     |     |     |     |     

Now concentrate on the thickened segment on the far left. 
The distance of its right endpoint from 0 is naturally ¹⁄₃. Since the 
value of each whole number on the number line reveals its 
distance from 0 (e.g., the distance of the point labeled 3 is 
exactly 3 from 0), logic demands that we label the right end-
point of this segment by the fraction ¹⁄₃, and we call this 

Defining Fractions 
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segment the “standard representation” of ¹⁄₃. We also denote 
this thickened segment by [0, ¹⁄₃], because the notation clearly 
exhibits the left endpoint as 0 and the right endpoint as ¹⁄₃. To 
summarize, we have described how the naive notion of ¹⁄₃ as  
“1 part when the whole is divided into 3 equal parts” can be 
refined in successive stages and made into a point on the 
number line, as shown below.

  

0               1                2               3       etc.
|     |     |     |                 |                 |                 
     ⅓

In a formal mathematical setting, we now use this particular 
point as the official representative of ¹⁄₃. In other words, 
whatever mathematical statement we wish to make about the 
fraction ¹⁄₃, it should be done in terms of this point. This 
agreement enforces uniformity of language and lends clarity to 
any mathematical discussion about ¹⁄₃. At the same time, the 
preceding discussion also gives us confidence that we can relate 
this point on the number line to our everyday experience with 
¹⁄₃, should that need arise.

What we have done to the representation of ¹⁄₃ can be done 
to any fraction with a denominator equal to 3; for example, the 
standard representation of ²⁄₃ would be the marked point to the 
right of ¹⁄₃ on the line above, and that of ³⁄₃ would be 1 itself. In 
general, we identify any m⁄₃ for any whole number m with its 
standard representation, and we agree to let 0 be written as ⁰⁄₃. 
Here, then, are the first several fractions with denominators 
equal to 3.

          
          

 0               1                2               3       etc.
 |     |     |     |     |     |     |     |     |     |     |     |     
0∕3  ⅓  ⅔  ₃⁄₃  ₄⁄₃  ₅⁄₃  6∕3  7∕3  8∕3  9∕3 10∕3 11∕3

Notice that it is easy to describe each of these fractions. For 
example, ⁷⁄₃ is the 7th division point when the number line is 
divided into thirds (in self-explanatory language). Equivalently, 

we can also say that ⁷⁄₃ is the 7th multiple of ¹⁄₃ (again, in 
self-explanatory language).

What we have done to fractions with denominators equal to 
3 can be done to any fraction. In this way, we transform the 
naive concept of a fraction as a part of a whole into the clearly 
defined concept of a fraction as a point on the number line. 
There are many advantages of this indispensable transforma-
tion, but there are three that should be brought out right away.

On the number line, all points are on equal footing, so that 
in the preceding picture, for example, there is no conceptual 
difference between ²⁄₃ and ¹¹⁄₃ because both numbers are equally 
easy to access. The essence of this message is that, when a 
fraction is clearly defined as a point on the number line, the 
conceptual difference between so-called proper and improper 
fractions completely disappears. So the first major advantage of 
understanding fractions as points on the number line is that all 
fractions are created equal. Now we can discuss all fractions all 
at once with ease, whether proper or improper. In this small 
way, the concept of a fraction begins to simplify, and learning 
about fractions gets easier. 

The second major advantage is that such a concept of 
fractions is inherently flexible. Once we specify what the unit 1 
stands for, all fractions can be interpreted in terms of the unit. 
Now we are ready for that ham. If we let 1 stand for the weight 
of the ham, then ¹⁄₃ would represent a piece of ham that is a 
third of the whole ham in weight. If, on the other hand, we let 1 
stand for the volume of the ham, then the same fraction will 
now be a piece of ham that is a third of the whole ham in 
volume—e.g., in cubic inches. 

This brings us to the third major advantage: the increase in 
flexibility mandates an increase in precision. Gone is the loose 
reference to “equal parts” in such a setting, because one must 
ask, equal parts in terms of what unit?

–H.W.

main topics of the elementary curriculum are not a collection of 
unrelated facts; rather, they form a whole tapestry where each 
item exists as part of a larger design. Unfortunately, elementary 
school students do not always get to see such coherence. For 
example, although whole numbers and fractions are intimately 
related so that their arithmetic operations are essentially the same, 
too often whole numbers and fractions are taught as if they were 
unrelated topics. The comment I frequently hear that “fractions 
are such different numbers” is a good indication that elementary 
mathematics education, as it stands, cannot go forward without 
significant reform, such as the introduction of math teachers. 
Another example of the current incoherence is the fact that finite 
decimals are a special class of fractions, yet even in the upper 
elementary grades, decimals often are taught as a topic separate 
from fractions. As a result, students end up quite confused having 
to learn three different kinds of numbers (whole numbers, frac-
tions, and decimals), whereas learning about fractions should 
automatically make them see that the other two are just more of 
the same. These are only two of many possible examples of our 
splintered curriculum and the great harm it does to students’ 
learning. 

Another manifestation of the coherence of mathematics is the 

ubiquity of the general principle of reducing a complicated task 
to a collection of simple subtasks. This principle runs right through 
all the standard algorithms, and also all the algorithms for deci-
mals. In middle and high school mathematics, it also is the guid-
ing principle in the discussion of congruence and similarity, 
provided these concepts are presented correctly. It also should be 
the guiding principle in the discussion of quadratic functions and 
their graphs, thereby making the basic technique of completing 
the square both enlightening and inevitable. Similarly, we saw 
how one embracing definition of division clarifies the meaning of 
the division of whole numbers and fractions and, as students 
should be taught in later grades, all rational numbers, real num-
bers, and complex numbers. 

Precision: Children should learn about this mathematics tapestry 
in a language that does not leave room for misunderstanding or 
guesswork. It should be a language sufficiently precise so that they 
can reconstruct the tapestry step by step, if necessary. Too often, 
such precision of language is not achieved. For example, if you 
tell a sixth-grader that two objects are similar if they are the same 
shape but not necessarily the same size, it raises the question of 
what “same shape” means. A precise definition of similarity using 
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the concept of dilation from a point A would not allow for such 
confusion (as students will see that an object changes size, but 
not shape, when each point of the object is pushed away from or 
pulled into A by the same scaling factor).

Another example of the need for precision manifests itself in 
the way we present concepts. It is worth repeating that before we 
do anything in mathematics, we must make clear what it is that 
we are doing by providing precise definitions. There is no better 
example of the need for precision than the way fractions are gen-
erally taught in schools. Too often, fractions are taught without 
definitions, so that students are always in the dark about what 
fractions are. Thus, students multiply fractions without knowing 
what multiplication means and, of course, they invert and multi-
ply, but dare not ask why. It is safe to hypothesize that such con-
ceptual opaqueness is largely responsible for the notorious  

nonlearning of fractions—and, as a result, for great difficulty as 
students begin algebra.

Reasoning: Above all, it is important that elementary school math-
ematics, like all mathematics, be built on reasoning. Reasoning is 
the power that enables us to move from one step to the next. When 
students are given this power, they gain confidence that mathe-
matics is something they can do, because it is done according to 
some clearly stated, learnable, objective criteria. When students 
are emboldened to make moves on their own in mathematics, 
they become sequential thinkers, and sequential thinking drives 
problem solving. If one realizes that almost the whole of mathe-
matics is problem solving, the centrality of reasoning in mathe-
matics becomes all too apparent. 

When reasoning is absent, mathematics becomes a black box, 
and fear and loathing set in. An example of this absence is some 
children’s failure to shift successive rows one digit to the left when 
multiplying whole numbers, such as on the left below.

826
×      473

2478
5782 

+   3304
11564

826
×          473

2478
 5782 
        +    3304      

390698

If no reason is ever given for the shift, it is natural that children 
would take matters into their own hands by making up new rules. 
Worse, such children miss an excellent opportunity to deepen their 
understanding of place value and see that, in this example, the 
multiplication 4 × 8 is actually 400 × 800, and that this is the basic 
reason underlying the shift. Another notorious example is the addi-
tion of fractions by just adding the numerators and the denomina-
tors, something that happens not infrequently even in college. 

Learning cannot take place in the classroom if students are kept in 
the dark about why they must do what they are told to do.

The characteristics of coherence, precision, and reason-
ing are not just niceties; they are a prerequisite to mak-
ing school mathematics learnable. Too often, all three 
are absent from elementary curricula (at least as they 

are sketched out in both state standards and nationally marketed 
textbooks).* As a result, too often they also are absent from the 
elementary classroom. The fact that many elementary teachers 
lack the knowledge to teach mathematics with coherence, preci-
sion, and reasoning is a systemic problem with grave conse-
quences. Let us note that this is not the fault of our elementary 
teachers. Indeed, it is altogether unrealistic to expect our general-
ist elementary teachers to possess this kind of mathematical 
knowledge—especially considering all the advanced knowledge 
of how to teach reading that such teachers must acquire. Com-
pounding this problem, the pre-service professional development 
in mathematics is far from adequate.† There appears to be no hope 
of solving the problem of giving all children the mathematics edu-
cation they need without breaking away from our traditional 
practice of having generalist elementary school teachers.

The need for elementary teachers to be mathematically profi-
cient is emphasized in the recent report of the National Mathemat-
ics Advisory Panel.‡ Given that there are over 2 million elementary 
teachers, the problem of raising the mathematical proficiency of 
all elementary teachers is so enormous as to be beyond compre-
hension. A viable alternative is to produce a much smaller corps 
of mathematics teachers with strong content knowledge who 
would be solely in charge of teaching mathematics at least begin-
ning with grade 4. The National Mathematics Advisory Panel has 
taken up this issue. While the absence of research evidence about 
the effectiveness of such mathematics teachers precluded any 
recommendation from that body, the use of mathematics teachers 
in elementary school was suggested for exactly the same practical 
reasons.§ Indeed, this is an idea that each state should seriously 
consider because, for the time being, there seems to be no other 
way of providing our children with a proper foundation for math-
ematics learning.

We have neglected far too long the teaching of mathematics in 
elementary school. The notion that “all you have to do is add, sub-
tract, multiply, and divide” is hopelessly outdated. We owe it to 
our children to adequately prepare them for the technological 
society they live in, and we have to start doing that in elementary 
school. We must teach them mathematics the right way, and the 
only way to achieve this goal is to create a corps of teachers who 
have the requisite knowledge to get it done.   ☐

*See, for example, the National Mathematics Advisory Panel’s “Report of the Task 
Group on Conceptual Knowledge and Skills,” especially Appendix B, www.ed.gov/
about/bdscomm/list/mathpanel/report/conceptual-knowledge.pdf, and “Report of the 
Subcommittee on Instructional Materials,” www.ed.gov/about/bdscomm/list/
mathpanel/report/instructional-materials.pdf.
†See, for example, the National Council on Teacher Quality’s No Common Denomina-
tor, www.nctq.org/p/publications/reports.jsp.
‡See Recommendation 7 on page xviii and Recommendations 17 and 19 on page xxi 
in Foundations for Success: The Final Report of the National Mathematics Advisory 
Panel, www.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf.
§Foundations for Success, Recommendation 20, page xxii, see note above for URL.

It is unrealistic to expect our generalist 
elementary teachers to possess this kind 
of mathematical knowledge—especially 
considering the advanced knowledge 
they must acquire to teach reading.
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By Karin Chenoweth

Most schools have traditionally been organized so 
that individual teachers operate in isolation, with 
no recognized standards for what or how to teach, 
and with only an occasional supervisor wandering 

through to criticize kids’ behavior or teachers’ bulletin boards.1 
Good principals have taken great care in hiring teachers, but tra-
ditionally, a principal’s job has been widely understood within 

the education world to be handling and preventing crises, staving 
off parents by keeping them busy raising money for the school, 
and—at the high school level—producing winning sports teams. 
Superintendents are pretty much expected to do the same thing 
on a larger scale, which means they try to keep their school boards 
mostly focused on athletic fields and bond referenda instead of 
what and whether kids are learning.

That all sounds grim, but it gets worse. In general, teachers 
pretty much sink or swim—that is, become bad or good teachers—
on their own, with very little help from their colleges’ teacher 
preparation programs, little help from principals and colleagues, 
and shockingly little guidance on what they are actually supposed 
to teach.2 “Teachers are born, not made,” the old saw goes, imply-
ing that there is not really a body of knowledge and skill teachers 
need to master. Many a social studies teacher has been assigned 
to teach high school algebra with little more help than the airy 
sentiment, “A good teacher can teach anything.”

As far as what they are supposed to teach, teachers have pretty 

Piece by Piece
How Schools Solved the Achievement Puzzle and Soared
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much had to make it up. They have rarely been provided a system-
atic plan of instruction that allows them to know what a student 
should have learned before getting to their classroom, what each 
student needs to learn in their classroom, and what the student 
will learn once he or she leaves their classroom. If they’re lucky, 
they have colleagues who take pity on them and help out, but even 
then, the solutions are idiosyncratic, leaving far too many kids 
studying the rain forest and Charlotte’s Web multiple times in their 
school careers without ever studying animal classification and 
Tom Sawyer.

By operating without clear standards for what they are sup-
posed to teach or good information about how to ensure students 
learn, teachers—particularly inexperienced ones—are 
left to hope their kids arrive knowledgeable, disciplined, 
organized, and able to understand material the first time 
it is presented. Kids, being kids, rarely come in pre-edu-
cated, and children who grow up in poverty or isolation 
often arrive significantly behind in vocabulary, back-
ground knowledge, and organizational wherewithal. 
When kids arrive behind, they need much more skilled 
instruction than most middle-class kids require. The 
resulting disconnect between teacher hopes and reality 
leads to endless teacher frustration and is at least part of 
the reason so many young teachers flee high-poverty, 
high-minority schools in search of “better” kids or aban-
don the profession altogether.3

The sense that low student achievement in high-pov-
erty and high-minority schools is the fault of the students 
themselves—and their families—has permeated the education 
profession. As a result, not only many teachers but also many 
principals, superintendents, academics, and even much of the 
public have come to think that there is little schools can do to help 
low-income students and students of color achieve at levels com-
parable to their more privileged peers. I disagree.

For the past five years, I have been visiting high-poverty and 
high-minority schools that have demonstrated success through 
their student achievement data.

Each school’s reading, math, and science achievement data 
have been thoroughly examined to ensure that not only are the 
schools doing well in the aggregate, but that each group of stu-
dents is also doing well. In these schools, achievement gaps are 
narrow or, in some cases, nonexistent. Aside from a few rudimen-
tary checks to ensure that they have achieved their success legiti-
mately, I simply ask the educators in those schools to describe 
what they do to achieve their success. My assumption is that they 
are the experts in their success, and that we need to learn what 
they have to teach. So it is all the more significant that I saw and 
heard about the same essential elements again and again.

Different principals and teachers list those elements in a dif-
ferent order and might use different words, but Molly Bensinger-
Lacy, principal of Graham Road Elementary School in Falls 
Church, Virginia,* was particularly succinct: “The strategies for 
educating students to high standards are pretty much the same 
for all kids: teacher collaboration; a laserlike focus on what we 

want kids to learn; formative assessment to see if they learned it; 
data-driven instruction; personal relationship building.”

In my new book, How It’s Being Done, from which this article 
is drawn, I explore those essential elements and how I saw them 
play out in different schools and different contexts. 

Anyone looking for simple answers will not find them here. As 
many of the teachers and administrators in these schools, which 
I call “It’s Being Done” schools, have told me, there is no magic 
bullet—there is no single program, policy, or practice that will 
ensure all schools and all students will be successful. Educating 
children is a complex task, and when children live in poverty or 
isolation, the task is even more complex. If our nation is to have 

an educated citi-
zenry, we must be 
very thoughtful and 
deliberate about 
the way we struc-
ture all children’s 
educational experi-
ences. All the elements described below work together to funda-
mentally change how we go about educating all students.

Teacher Collaboration
Many teachers, reading Bensinger-Lacy’s recommendations for 
high standards of education, may say something along the lines 
of, “When are we supposed to collaborate? I teach all day, and 
during my planning times, I plan lessons and grade papers.” Oth-
ers may say, “We ‘collaborate’ [imagine air quotes and sarcastic 
tone], and it is such a waste of time. Then I have to go home and 
prepare lessons and grade papers until late at night.” Both reac-
tions are understandable in schools that do not provide the struc-
tures to make sure teacher collaboration is both possible and 
productive.

So let’s begin at the beginning. The point of teacher collabora-
tion is to improve instruction for students and to ensure that all 
students learn. No one teacher can be an expert in all aspects of 
the curriculum, all possible ways to teach it, and every child who 
sits in his or her class. But every teacher should have expertise that 
can be tapped by other teachers to improve their knowledge of 
their subject, their teaching skill, and their knowledge of their 
students.

It should be said, however, that learning from colleagues is not 

Children who grow up in poverty or  
isolation often arrive significantly  
behind in vocabulary, 
background  
knowledge, and  
organizational 
wherewithal. 

*All of the schools mentioned in this article are profiled in either my new book, How 
It’s Being Done: Urgent Lessons from Unexpected Schools (Harvard Education Press, 
2009), or in my 2007 book, It’s Being Done: Academic Success in Unexpected Schools 
(Harvard Education Press).
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something that is built into the field of American teaching. It 
sometimes springs up because teachers organize themselves to 
work together, but it has not been integral to teacher professional 
development or school organization. When teachers advise each 
other, consult with experts, think deeply about new ways to teach 
the material, and examine existing research in a systematic way 
in order to help all their students learn the material, they are work-
ing in sharp contrast to the way teachers have traditionally been 
expected to work. They are working in schools that have the struc-
tures and systems in place that make collaboration meaningful.

Let’s examine the conditions necessary for the kind of collabo-
ration I saw in It’s Being Done schools.

Time

I’m starting with the obvious, but that doesn’t make it any less 
important. To make their time with students effective and worth-
while, teachers must have time to think about their lessons, 
observe each others’ classes, examine student work, learn from 
colleagues and outside experts, and do all the other things that 
are subsumed under the term collaboration.

It’s Being Done schools make sure that teachers have regular 
meeting times, usually during the course of the school day. The 
schools squeeze in the time where they can. Elementary schools 
generally schedule “specials”—that is, art, music, counseling, and 
physical education—so that all the students from a particular 
grade have them at one time, permitting the grade-level teachers 
time to meet. Some schools close early once a week to permit 
cross-grade collaborations. Others have aides start the school day, 
supervising the putting away of coats and boots, collecting home-
work and lunch money, and distributing backpack notices while 
teachers meet together. Many secondary schools schedule plan-
ning time so that the teachers can meet with their departments 
or teams. If possible, schools find money to pay teachers to stay 
after school or come in on Saturdays.

At Ware Elementary School in Fort Riley, Kansas, principal Deb 
Gustafson told me that when she speaks to other educators, the 
lack of available time to meet “is usually one of the biggest 
excuses.” Since all schools have roughly the same amount of time, 
“The message needs to be that it has to be captured; creativity 
must be employed,” she said.

The schools I visit are, for the most part, Title I schools, mean-
ing that they receive federal funds aimed at high-poverty schools. 
As a result, they often have a bit more resources than non–Title I 
schools have to pay teachers to meet outside school hours or hire 
substitute teachers to allow for classroom observations. Not coin-
cidentally, It’s Being Done schools work hard to make sure that 
time with substitutes is not a waste of time for children. In Steu-
benville, Ohio, substitutes must get a minimum of one day of 
training in reading instruction and one day in math. In addition, 
each elementary school in the district is allocated 100 days of a 
substitute teacher; Wells Elementary hired a recently retired 
teacher for that part-time position.

One way or another, all of the schools carefully carve out time 
for teacher collaboration. But time is not enough. The time has to 
be well spent.

Rules of Engagement

To make teacher collaboration time productive, cultural norms 

about how that time will be spent must be established.

If you don’t say it in the meeting, don’t say it in the parking •	
lot. At Oakland Heights Elementary in Russellville, Arkan-
sas, principal Sheri Shirley made this an explicit rule. Shirley 
wasn’t looking to quell disagreements, but to ensure that 
they saw the light of day and didn’t fester. Note, however, 
that this must be matched with openness on the part of the 
leader to hear things he or she might not want to hear.

Focus discussions on the things the school can control rather •	
than what it can’t. Molly Bensinger-Lacy of Graham Road 
uses a graphic organizer for teachers to fill out all the causes 

of a given problem—and then together they cross out any-
thing they don’t have control over, from the poverty of the 
kids to the testing schedule of the district.

Focus on specific objectives related to instruction•	 . According 
to Ware Elementary’s principal, Deb Gustafson, “meetings 
and requirements must be well organized, focused, agenda-
driven, and contain specific expectations.” Meetings should 
not be filled with the administrative trivia of new roll-call 
systems, hall-duty assignments, or anything else that could 
be handled by e-mail.

At the beginning of the school improvement process, princi-
pals often will sit in on the teacher collaboration meetings to make 
sure the sessions are productive; once teachers have begun to 
internalize the norms, teachers usually meet on their own. Often 
principals will require that specific products result from these 
meetings, such as a curriculum map, formative assessment, or 
group of lesson plans complete with assignments.

And when teachers observe other classrooms, it is often with 
a specific aim in mind. In Elmont, New York, I learned about 
Elmont Memorial Junior-Senior High School’s evaluation process, 
in which an “action plan” is formulated to help teachers improve. 
Here’s one example: “By observing Ms. McDonnell, you will take 
note of smooth transitions between lesson activities that will 
enable you to maintain student attention. From Ms. Smith, you 
will see the perfect implementation and enforcement of sound 
opening strategies. Finally, from Mr. Schuler you will observe the 
benefits reaped from a well-structured activity.” This is not simply 
sending teachers off to wander and possibly pick up some tips 

“The strategies for educating students  
to high standards are: teacher  
collaboration; a laserlike focus on  
what we want kids to learn; formative 
assessment to see if they learned it;  
data-driven instruction; personal  
relationship building.”

–Molly Bensinger-lacy,  
Principal of Graham Road Elementary School
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from more experienced teachers, but rather a highly structured 
way of making sure teachers learn from each other.

Good Teachers Willing to  
Collaborate to Improve Student Achievement

Again, so obvious you want to say, “Duh.” But that doesn’t make 
this an unimportant point. “You’ve got to have master teachers,” 
said Susan Brooks, the principal who led the improvement of 
Lockhart Junior High School, in Lockhart, Texas. “It’s all about 
teachers.”

It’s Being Done principals warn prospective teachers that they 
will be expected to work collaboratively. “Our interviews take a 
really long time,” Bensinger-Lacy says, because she lays out in 
great detail the collaborative environment teachers will be 

expected to participate in. This has not made it difficult to recruit; 
on the contrary, as word gets around and success builds, most It’s 
Being Done schools have found it easier to find applicants.

Although It’s Being Done schools hire carefully—and occa-
sionally counsel out teachers unwilling or unable to work collab-
oratively—they also give good, experienced teachers time to get 
used to working in the kind of public way these schools require. 
One of the difficult issues involved in school improvement is that 
many veteran teachers are used to seeing a parade of one unsuc-
cessful principal after another (not to mention superintendents), 
many of whom talk big before fizzling out. Those teachers need 
to be convinced that changing will be meaningful and not just 
another heartbreaking waste of time. That means there needs to 
be a commitment on the part of school leaders—who need the 
support of their superintendents—to stay in place for the improve-
ment process. How long that takes depends on the school, but It’s 
Being Done principals have told me that although there should 
be some signs of improvement, particularly in the school atmo-
sphere, almost immediately, improvements in instruction might 
take as long as two or three years to be reflected in state test scores. 
To go from being the first school in Kansas to be put “on improve-
ment” to one of the best schools in the state took Ware about six 
years; to go from being in the bottom third to the top third of 
schools in California took Imperial High School about as long.

Because the point of teacher collaboration is to improve stu-
dent achievement, teachers in It’s Being Done schools recognize 
that the students who struggle the most need the best teachers. 
At Wells Elementary, for example, one of the most accomplished 
reading teachers (in a building full of accomplished reading 

teachers) is assigned to teach the “lowest” class of struggling first-
graders. This is in direct contrast to ordinary schools, where the 
best teachers are often rewarded with the “best” students, who 
are usually defined as those students who easily master new mate-
rial with or without expert teachers.

While It’s Being Done schools seek out accomplished teachers 
for tough assignments, they also recognize that someone just 
entering the profession, whether from a traditional or an alterna-
tive certification program, needs a great deal of support. “We got 
him as a baby, first rattle out,” is the way Lockhart Junior High’s 
Brooks described Jeffrey Knickerbocker, who came into teaching 
after working as a geophysicist. He himself said that when he first 
started, he was a “terrible teacher.” But he got the help and support 
he needed and is now widely acknowledged both by his colleagues 
and by students to be among the best teachers in the school.

Common Goals

Meaningful collaboration requires teachers to have meaningful 
things to collaborate about, and that is the subject of the next 
section. But even before that, teachers need to share the goal 
that every student be successful. Sometimes this means having 
the vision to see past their students’ childhood and adolescent 
goofiness. English teacher José Maldonado at Granger High 
School in Granger, Washington, said this about his students, 
many of whom are tempted by the gangs that dominate the 
Yakima Valley: “I try to look beyond where they are now and see 
them for who they will be.”

A Laserlike focus on  
What We Want Kids to Learn
For generations, teaching has been an isolated activity, and teach-
ers pretty much decided what they would teach. At the same time, 
teachers have long been whipsawed from one fad to another about 
how to teach. Teachers were told to keep their students seated in 
neat rows and columns, then they were told to have them sit in 
circles, and then in cooperative learning groups. They were told 
to have quiet classrooms, and then they were told to have lively 
yet controlled classrooms. And so on. Yet through all that, most 
teachers were still allowed to decide whether kids would learn 
about dinosaurs or the Bill of Rights. This is exactly backward. 
Teachers should be the experts in how to teach, but on their own, 
they should not be deciding what to teach.

After all, the reason we have schools is to impart the knowledge 
and skills that our society as a whole has deemed important. This 
means that decisions about what knowledge and skills children 
learn are of concern to all of us. That doesn’t mean that there 
shouldn’t always be room in a school day or year for teachers to 
share their passion for the more obscure plays of William Shake-
speare. But the bulk of the curriculum should be devoted to the 
knowledge and skills that we as a society have decided are essen-
tial for students to become educated citizens.

Today, we are converging on the idea that every high school 
graduate should be ready for college or the workplace. The more 
we study what this actually means, the more we realize that the 
two are pretty much the same. To be ready for, say, a plumbing 
apprenticeship or to get a job on an automobile assembly line or 
as a sales representative requires that students have fairly high 
reading and writing levels and have mastered math at least 

While It’s Being Done schools seek  
out accomplished teachers for tough 
assignments, they also recognize that 
someone just entering the profession 
needs a great deal of support. 
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through Algebra II. In other words, students who are entering the 
workforce after high school require the same educational level as 
students who are ready for credit-bearing classes in college—at 
least if they want the kind of job that has traditionally offered paid 
vacation and health insurance.

The last 20 years has seen the beginning of agreement about 
what should be taught. For the most part, this has taken the form 
of states bringing together groups of teachers and content experts 
to set standards for what students are expected to know and be 
able to do by the time they graduate; then the groups work back-
ward through the grades. The real problem is that too few states 
have done the hard job of developing clear, teachable standards. 
Some states have shied away from paring down what they want 
students to learn, so their standards tend to be impossibly large 
compendia of knowledge and skills. Other states have stuck with 
incredibly vague standards that do not offer any 
real guidance. Even in a field as seemingly 
definite as mathematics, the lack of clar-
ity in standards has led to math curri-
cula that are, as scholar William 
Schmidt says, “a mile wide and an inch 
deep.”

By being too broad and expecting 
too much, many states essentially push 
the decisions of what to teach back 
onto individual teachers, who find 
themselves picking and choosing 
among standards rather than trying 
to teach all of them—because teach-
ing all of them is impossible. (In con-
trast, by paring down the vast array of 
human knowledge into a relatively 
manageable yet ambitious set of stan-
dards, Massachusetts made a real con-
tribution, and it did so long enough ago that those standards have 
really started permeating Massachusetts schools. Massachusetts 
now has the highest overall performance in reading and math on 
the National Assessment of Educational Progress.)

Many It’s Being Done educators hope that all states and schools 
will eventually share the same ambitious national standards. As 
Ware’s Gustafson told me in an e-mail: “National standards would 
help the students most in need, those with the highest mobility.” 
She added that the difficulties of moving from school to school 
are compounded “by making the requirements different every-
where a student lands.”

Even once common standards are embraced, however, teach-
ers still have a lot of work to do. It’s Being Done schools often have 
to build their own curriculum from scratch, and most spend quite 
a lot of time building “curriculum maps” or other documents that 
clearly delineate what each grade will study when. Roxbury Prep 
in Roxbury, Massachusetts, has teachers come in three weeks 
ahead of the students, in part to build that year’s curriculum map. 
Graham Road Elementary School has daylong teacher retreats 
while students are taught by substitutes so that teachers can build 
their curriculum map, and Imperial High School has slowly built 
its curriculum map, subject by subject, over the years.

Once that initial planning is done, teachers don’t have to start 
from scratch in subsequent years, but can work on improvements 

and refinements each year. For this, they will often use the results 
on state tests. If their students didn’t do well on measurement, for 
example, the teachers will revise their instructional strategies and 
may add time to that subject. If all the students have mastered 
standard punctuation, the teachers might decide to spend a little 
less time on that subject so they can add time to teaching students 
how to write research papers.

Teachers then work on how students should demonstrate their 
knowledge of the curriculum. To make this effective, teachers 
need to agree on a good assessment, what constitutes meeting 
standards, and what constitutes exceeding standards. Teachers 
often need help in learning how to do this work—which is known 
as proficiency setting or range finding—and in making sure that 
they are aiming at high standards (more on this topic in the next 
section, “Formative Assessments”).

Even now, teachers are not yet ready to 
walk into the classroom. A curriculum with 
assessments still isn’t sufficient guidance for 

a teacher to know what he or she is doing tomorrow. Teachers in 
It’s Being Done schools work together on lesson plans. This is 
where all their hard work in collaborating pays off for teachers. 
Because they work together so closely and because they are work-
ing on the same things at the same times, they are able to share 
the work of developing individual lessons. Outside the teaching 
profession, not everyone understands what a huge and complex 
burden lesson planning is—particularly for new teachers. At Lock-
hart Junior High School, new teachers are handed their entire first 
year of lessons so that they don’t have to worry about planning. 
As Susan Brooks, the former principal, said, it takes so much effort 
to learn about the school’s routines, culture, colleagues, and 
students—as well as to establish good classroom management 
and build relationships with their students—that new teachers 
simply don’t have the time and energy to plan lessons. After their 
first year, they are welcomed into the collaborative process of les-
son development. Far from feeling undermined, the new teachers 
I spoke to said they felt supported by this system.

formative Assessments
Students have always had regular assessments—I had weekly 
spelling and arithmetic tests all through my elementary school 
years, in addition to the big chapter tests, unit tests, and, of course, 

It’s Being Done schools often have 
to build their own curriculum 

from scratch, and most spend 
quite a lot of time building 
“curriculum maps” that clearly 
delineate what each grade  
will study when. 

(Continued on page 22)
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For some schools, the smartest thing to do is adopt a school 
improvement model that has been demonstrated effective and 
then work hard to make it successful. No one should ever think 
this means those schools are not being creative. Symphony 
violinists do not compose their own music, but no one calls them 
uncreative. Ensuring that all children in a school are learning—
particularly when the children live in poverty or isolation—
requires creativity and thought at every juncture.

Today, we have quite a few successful, replicable models. In my 
2007 book, It’s Being Done, and in my new book, How It’s Being 
Done (from which this sidebar is drawn), I profiled schools that 
have successfully used the Core Knowledge, 
Success for All, and Uncommon Schools 
models. The Knowledge Is Power 
Program (KIPP) and Green Dot charter 
schools, which I have not visited but 
other authors have, appear to have 
developed still other successful 
school models. 

But success is not guaranteed. 
Ware Elementary in Fort Riley, 
Texas, is an example of a school 
that used Success for All but was 
still unsuccessful until a real 
leader, Deb Gustafson, and her 
team arrived. So it is perfectly 
reasonable to want to save 
some trouble by adopting a 
carefully researched model, 
but making it work still 
requires energy, creativity, 
and knowledge.

In the brief excerpt below, 
we learn how P.S./M.S. 124, a 
K–8 school in Queens, New 
York, used the Core Knowledge model to move from an under-
performing school to one in which seventh-graders sound like 
college students.

*  *  *
Did Shakespeare hate women?

The seventh-graders wondered. They had finished reading A 
Midsummer Night’s Dream, and they couldn’t agree. Heated 
arguments inspired the students to read more of Shakespeare’s 
plays to try to answer the question. Some ended up answering 
yes, some no, depending on which plays they relied on, but the 
result was that the seventh grade of P.S./M.S. 124, otherwise 
known as Osmond A. Church School in Queens, New York, or just 
“P.S. 124,” spent a lot longer on the Shakespeare unit than had 
been planned by their teachers. “It took on a life of its own,” said 
principal Valarie Lewis.

To interest 12-year-olds in formulating such a question, and 
then allow them to push their teachers for more time to read and 
use primary documents as evidence, is a worthy feat for any 
school. But P.S. 124 is a school that would be written off by some 
as incapable of nurturing such intellectual discourse because the 
vast majority of the students are minorities who qualify for free 
or reduced-price lunch. And yet, as a result of steady improve-
ment over a number of years, the school posts higher proficiency 
rates than the state as a whole and much higher than New York 

City. P.S. 124 began its improvement journey in 1999, when it 
received a three-year $784,000 Comprehensive School Reform 
grant from the New York State Department of Education and the 
teachers and administrators agreed to adopt Core Knowledge, 
which was then a relatively new program.

Core Knowledge, conceived and developed by author and 
scholar E. D. Hirsch Jr., begins with the idea that it is the job of 
schools to produce educated citizens. To be educated means 
knowing a large body of content as preparation for being able to 
read, understand, and evaluate newspaper and magazine articles, 
election materials, jury instructions, scientific research, literature, 

and anything else educated citizens 
might be called upon to read and 

evaluate. The Core Knowledge 
Foundation has a plan for instruc-

tion that focuses on building a 
knowledge base about world history, 

geography, civics, literature, science, 
mathematics, art, and music.

The federal grant paid for teachers 
to come in during the summer to learn 
the program. Core Knowledge gave a 
framework for teaching much more 
content than teachers had ever 
taught before. The teachers 

developed a three-month scope 
and sequence of what they 
would teach in the fall. It was 
too overwhelming to begin 
teaching the entire Core 
Knowledge program all at 
once, so the school phased it 
in—about half the first year, 
three-quarters the second 

year. Now the school aims to 
teach the entire program. The process of working to master a 
rich, content-oriented curriculum brought the teachers together 
as a team, Lewis said. “They were good teachers, but we were all 
isolated.” The first day of the summer institute, Lewis said, “was 
group therapy. As an educator, what are your strengths, weak-
nesses, goals? They had never talked before.”

The seventh-grade class of 2006—the class that became 
interested in Shakespeare’s attitude toward women—was the first 
class to receive the benefit of the school’s curricular improvements 
throughout its schooling. Four years before, Lewis said, 60 percent 
of the children were failing in third grade—“they were six months 
behind where they needed to be to be promoted.” But by 
seventh grade, she said, they had written 10-page papers on such 
subjects as Sudan, Nazism, and the hardships faced by immigrants 
to America, and “will debate you on democracy and imperialism. 
They’ve really grown.” Because of Core Knowledge, Lewis said, 
students “are really thinking critically. But it took seven years.” 
She added that “everybody’s looking for a quick fix,” but real 
improvement takes time. 

One of the jobs the school took on was to educate parents 
about the curriculum, in part because many of the parents didn’t 
know the material and were upset that they couldn’t talk with 
their children about what they were learning in school. “Teachers 
became teachers of the parents,” Lewis said. All parents now 

A Model Solution
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Percentage of Students Meeting  
State Standards in Mathematics,  

2007–08

receive a copy of E. D. Hirsch’s book, What Your First Grader Needs 
to Know: Fundamentals of a Good First-Grade Education, or the 
equivalent book for their children’s grade level. Every six weeks, 
the school holds a Saturday workshop where parents learn about 
the curriculum and the tests their children are preparing for. 
While parents are in their classes, their children are off learning 
other material. In addition, there is a curriculum night every six 
weeks. There, parents learn about the curriculum in addition to 
learning how to help their children academically. “Some parents 
don’t know how to color with children or how to read a book to 
their children,” Lewis said. “So we teach them those skills.” Before 
Core Knowledge was adopted, the school only attracted 10 or 12 
parents to meetings, Lewis said; now, hundreds attend the 
workshops.

Lewis said that students at P.S. 124 bring to school all the issues 
of any large school. “We have lots of kids who have been 
hospitalized, who are suicidal, bipolar, schizophrenic, ADHD.” The 
school provides a support system when things don’t go well, 
providing referrals to social workers, health services, and housing 
services in addition to having a counselor, a half-time social 
worker, and a half-time school psychologist on staff. “We’re a 
total-care facility,” Lewis said, only half joking. “We get them 
bereavement groups, AA, drug rehab.”

Content Rich
In general, New York City is considered to have more of a 
skill-based curriculum than a content-based curriculum. Through 
the content provided by Core Knowledge, P.S. 124 works hard to 
make sure students learn the skills New York City wants taught. 
“Core Knowledge has really given us a focus. It really gives 
teachers the meat. But teachers still need to teach the skills,” said 
Judy Lefante, the school’s Core Knowledge coordinator. “You can’t 
have one without the other, but we’ve worked hard through 
professional development to make sure they teach skills through 

Percentage of Students Meeting  
State Standards in English Language Arts,  

2007–08
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Students at P.S. 124 in Queens Outperform Their Peers Citywide

content.” So, for example, skills such as making inferences, 
drawing conclusions, and separating facts from opinion are all 
worked on within the science and social studies content areas. In 
addition, Lefante said, “We try to integrate everything as much as 
possible so we don’t have fragmented learning and children really 
build their background knowledge.” If the children are studying 
Europe during the medieval period, for example, they read Robin 
Hood as well as nonfiction, Lefante said.

Lewis and assistant principal Linda Molloy are continually in 
classrooms, observing instruction and making sure that teachers 
and students are on track. “They want to do a good job,” Lewis 
said. “My belief is that new teachers need time to grow.” She has 
two or three teachers she considers marginal, so she sends in the 
literacy coach, the math coach, and the Core Knowledge facilita-
tor to teach model lessons and help the teachers develop their 
skills. In addition, she said, she sends those marginal teachers into 
the classrooms of stronger teachers, arranges for professional 
development, and celebrates improvements. “The community 
needs to make each educator better,” Lewis said.

To ensure that the school is on track, teachers and administra-
tors monitor individual student growth on several measures, 
including unit tests. By studying the data, school staff members 
have identified the weakest area in the school to be grammar. 
Students often don’t understand issues such as verb agreement 
and verb conjugation. To address the weakness, Lewis has 
purchased grammar textbooks and arranged for professional 
development for teachers on the subject.

“The expectations are always high,” Lewis said. “It’s about the 
belief.”

Students appear to appreciate the expectations and the level 
of instruction. As one student, who came to P.S. 124 after being in 
another school, said, “I like this school better because you learn 
more things.”

–K.C.
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the norm-referenced standardized tests most of us took growing 
up. But for the most part, those assessments were used as “sum-
mative assessments.” That is, they were used to gauge what stu-
dents knew, assign grades, and ultimately, sort kids into “high,” 
“middle,” and “low” reading or math groups in elementary school 
and tracks in secondary school. 

Formative assessments are not designed to assign a grade but 
to gauge what students know about a particular topic or what they 
are able to do. In this way, teachers can understand where stu-
dents are, what weaknesses or misunderstandings the students 
have, or whether they need additional enrichment or extension.

Some teachers may say, “We already have the state tests—we 

don’t need more assessments.” But that’s not how the educators 
in It’s Being Done schools think. They see state tests as useful end-
of-year or midyear assessments that make sure schools and stu-
dents are on track. But most state tests, for a variety of reasons, are 
not sufficient to guide day-to-day instruction. For one thing, 
results usually don’t come back in anything under a couple of 
months. And, of course, most state tests are pretty low level. It’s 
Being Done schools are aiming high, and they need to be able to 
see whether their students understand the material they are pre-
senting and are meeting rigorous standards. For that, the schools 
need their own formative assessments. At Lockhart Junior High, 
teachers give quizzes in each core academic class once a week—
students who score below 75 percent are immediately scheduled 
into “rescue classes” so that master teachers can figure out where 
the misunderstandings lie. At Graham Road, teachers go over 
every wrong test answer with every student so that they, too, can 
understand what led to the wrong answer. Sometimes it is just 
inattention; sometimes it is a misunderstanding of a word or a 
lack of background knowledge. In this way, teachers catch small 
problems before they grow.

It’s Being Done schools also often use the formative tests as a 
way to ensure that their students are ready for both the format and 
the content of state tests. This is not the same as “teaching to the 
test.” It is more along the lines of teaching students “test sophis-
tication,” as Valarie Lewis, principal of Osmond A. Church School 
in Queens, New York, calls it. Graham Road’s Bensinger-Lacy is 
forthright about saying that children need help acculturating 
themselves to state tests. “I have no apologies for doing for our 
kids what middle-class families do for their kids. I’m hoping that 
when SATs come around, they’ll understand how to take that kind 
of test.” But the emphasis in all these schools is not on test-taking 

strategies but on ensuring that students understand the material 
represented in high-level standards.

Data-Driven Instruction
In It’s Being Done schools, data are certainly used to identify 
which students need help and which need greater challenges. But 
there is another, more profound, way data are used as well: to see 
patterns that aren’t always visible to teachers in their day-to-day 
teaching. So, for example, kindergarten teachers at Graham Road 
pore over color-coded charts to try to see patterns of achievement. 
In her first year, teacher Laura Robbins saw from 
the charts that in comparison with the students 
in other classes, her students didn’t have 
many sight words. She asked her fellow 
teachers what they were 
doing to help their stu-
dents. This is the kind of 
crucial interaction among 
teachers that has led to more 
students at Graham Road 
achieving at high levels than 
in most schools in Virginia.

Similarly, at Imperial 
High School, teachers 
spend a day before 
each school year look-
ing for such patterns. 
One year they found that 
vo cabu l a r y  wa s  t h e 
weakest area for all groups 
of students—not just the 
English language learners. Once they identified that pattern, they 
were able to address the issue of vocabulary acquisition in a 
schoolwide way. Had the teachers simply been focused on their 
own students, they might never have noticed that even the high-
est-achieving students in the school still had weaknesses in their 
vocabularies.

Personal Relationship Building
It’s hard for me to fully convey the atmosphere in It’s Being Done 
schools and how different it is from ordinary schools. In essence, 
It’s Being Done schools have an atmosphere of respect and caring 
that emanates from the teachers and principals. As Ware Elemen-
tary teacher Lisa Akard said, “We’re a kind school. We really care 
about each other. The teachers care about the children.” That car-
ing is reciprocated by the students. So, for example, I could not 
find a student at Imperial High School who did not have good 
things to say about the school and his or her teachers. In compar-
ing Imperial to his previous school, student Israel Ramos said, 
“The teachers there were just getting through the year—here they 
really care if you do your work and do well.” Imperial’s principal, 
Lisa Tabarez, expressed it this way: “It’s not just about being suc-
cessful in high school. We work for a greater accomplishment. We 
work for students to be successful, to take care of themselves and 
take part in society.” Students respond powerfully to that commit-
ment to their overall well-being.

When I say that It’s Being Done schools are respectful, that 
doesn’t mean that they put up with disruptive behavior on the 

These schools have a respectful way of 
being honest about shortcomings.  
Failure merely means that students—
and teachers—have more work to do 
before they can be successful.

(Continued from page 19)
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part of students—they do not. They do not let the learning of their 
students be disrupted for any reason, even another student. But 
they remain respectful, even of disruptive students. When John 
Capozzi, who is now principal of Elmont Memorial Junior-Senior 
High School, was assistant principal, he was in charge of disci-
pline. His then-principal, Al Harper, said, “I’ve seen John suspend 
a student [and then] the student thanks him.” That’s how respect-
ful the atmosphere is.

At Imperial High School, staff often have to explicitly train stu-
dents, particularly new students, in the Imperial way of operating. 
“We start with where they are,” assistant principal Aimee Queen 
says. One student, who had just transferred in and was completely 
unused to an orderly school, was given the initial goal of not get-

ting thrown out of class. When he managed a whole day 
without disruption, Queen celebrated with him and gave 
him a pencil. They then started working on his being pre-
pared for class with a notebook and pencil, until finally, 

the expectation was that he was doing his work well and 
competently, complete with good grades in a college-
preparatory curriculum. As in just about everything in It’s 

Being Done schools, the ultimate standard was kept well in view, 
even as students and teachers worked on the many necessary 
interim steps.

These schools also have a respectful way of being honest about 
shortcomings without allowing them to be debilitating. Teachers 
work with administrators on improvement plans. And they speak 
candidly with students about their reading levels and academic 
accomplishments—or lack thereof—without the demeaning 
sense that if the students have failed at a task, it means they are 
and always will be failures. Failure merely means that students—
and teachers—have more work to do before they can be 
successful.

So, for example, at Norfork Elementary in Norfork, Arkansas, 
third-grade students who were very marginal readers were told 
that they needed to improve dramatically to be promoted to fourth 
grade, and they were given a special reading class dedicated to 
improving their decoding, fluency, and vocabulary. In the spring, 
when it was clear all of them would be prepared to move to the 
next grade, the teacher brought the principal in to celebrate. They 
were celebrating very real accomplishments by the students, who 
could feel genuine satisfaction that they had met a tough stan-
dard. The children weren’t being pumped up with phony self-
esteem-building exercises—they were building genuine self-
esteem based on the hard work of accomplishment.

It takes a great deal of work to establish the right kind of tone 
and atmosphere in It’s Being Done schools. But once it is estab-
lished, students feel safe and able to learn; teachers feel safe and 

able to teach; and, not incidentally, administrators who in ordi-
nary schools would spend all their time on discipline are able to 
turn their attention to other issues, such as improving 
instruction.

I have described at some length the five elements of school 
reform as listed by Molly Bensinger-Lacy: teacher collabora-
tion; a laserlike focus on what we want kids to learn; forma-
tive assessment to see if they learned it; data-driven instruc-

tion; and personal relationship building, all within the context of 
outside assessment. 

There is something else that she didn’t mention—something 
that I hope to explore more fully in future work—and that is lead-

ership. Principals of It’s Being Done schools set a vision 
for their schools and then helped teachers work toward 
it. And teachers set another version of that vision in their 
individual classrooms and then help their students work 
toward it. 

All those leaders have embraced as a goal something 
that American public schools never before were asked to 
do: to educate all students to a meaningful standard. They 
all understand that to make that goal anything more than 
a pipe dream requires an enormous shift in how schools 
are organized and how they operate.

By making sure that everyone understands what children need 
to learn and then figuring out how to teach them, teachers and 
principals in It’s Being Done schools have gone a long way toward 
devising the organizational structures that can help all students 
become educated citizens.

In contrast, the tradition of isolation that has characterized 
school organization has meant that too many children have gone 
to schools where there are no systems to ensure that they learn 
what they need. Affluent children, many of whom can draw on 
outside resources ranging from family dinner conversations to 
individual private tutoring, are often able to compensate for weak-
nesses in their school experiences. But children who live in pov-
erty or isolation have fewer such resources to draw on, making 
them more dependent on schools and more dependent on educa-
tors figuring out how to ensure they learn.

It goes without saying that no school is perfect. Even the most 
successful have their mistakes, failures, and weaknesses. All have 
ways they can improve. This is, after all, difficult work requiring a 
lot of thought, skill, and effort—but educating all students can be 
done, and successful schools are showing us the way.  ☐

Endnotes
1. Probably the best description of how schools are organized is by Harvard University’s 
Richard F. Elmore, “Building a New Structure for School Leadership,” American Educator 23, 
no. 4 (Winter 1999–2000): 6–13, 42–44, www.aft.org/pubs-reports/american_educator/
winter99-00/NewStructureWint99_00.pdf. 

2. On teacher preparation programs, see, for example, the indictment by Art Levine (former 
president of Teachers College at Columbia University) of just about all such programs in 
Educating School Teachers (Washington, DC: Education Schools Project, 2006), www.
edschools.org/teacher_report.htm. On colleague support, see, for example, Richard 
Kahlenberg’s description of Albert Shanker’s first year as a teacher in Tough Liberal: Albert 
Shanker and the Battles Over Schools, Unions, Race, and Democracy (New York: Columbia 
University Press, 2007). On teaching standards, see, for example, “There’s a Hole in State 
Standards: And New Teachers Like Me Are Falling Through,” by an anonymous second-year 
teacher, American Educator 32, no. 1 (Spring 2008): 6–7, www.aft.org/pubs-reports/
american_educator/issues/spring2008/newteacher.htm. 

3. For some insight into the disconnect between teacher hopes and reality, see “Pursuing a 
Sense of Success: New Teachers Explain Their Career Decisions,” American Education 
Research Journal 40, no. 3 (2003), which contains the results of a survey of 50 Massachu-
setts teachers.

Marginal readers in a special class were 
building genuine self-esteem based on the 
hard work of accomplishment.
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The United States of America was in crisis as 1934 
approached. Art seemed irrelevant as the national economy 
fell into a profound depression after the stock market crash 
of October 1929. Thousands of banks failed, wiping out the 
life savings of millions of families. Farmers battled drought, 
erosion, and declining food prices. Businesses struggled or 
collapsed. A quarter of the workforce was unemployed, 
while an equal number worked reduced hours. More and 
more people were homeless and hungry. Nearly 10,000 
unemployed artists faced destitution.

The nation looked expectantly to President Franklin Del-
ano Roosevelt, who was inaugurated in March 1933. The 
new administration swiftly initiated a wide-ranging series of 
economic recovery programs called the New Deal. The 
president realized that Americans needed not only employ-

Coaxing the  
Soul of America Back to Life

How the New Deal Sustained, and Was Sustained by, Artists

ment but also the inspiration art could provide. On Decem-
ber 8, 1933, the Advisory Committee to the Treasury on Fine 
Arts organized the Public Works of Art Project (PWAP). 
Within days, 16 regional committees were recruiting artists 
who eagerly set to work in all parts of America. Between 
December 1933 and June 1934, the PWAP hired 3,749 artists 
who created 15,663 paintings, murals, sculptures, prints, 
drawings, and craft works. 

The PWAP suggested “the American Scene” as appropri-
ate subject matter, but allowed artists to interpret this idea 
freely. PWAP images vividly captured the realities and ideals 
of Depression-era America. The PWAP art displayed in 
schools, libraries, post offices, museums, and government 
buildings lifted the spirits of Americans all over the 
country. 
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So begins 1934: A New Deal for Artists, an online and traveling 
exhibit by the Smithsonian American Art Museum. With our nation 
enduring the worst recession since the Great Depression, it’s a good 
time to recall and appreciate the extraordinary artwork that cap-
tured and sustained the American spirit during one of our nation’s 
most trying times. The paintings shown here, and the article below, 
are drawn from the exhibition book. To see the full exhibit, as well 
as related educational materials, go to http://americanart.si.
edu/exhibitions/archive/2009/1934/index.cfm. 

–editors

By Roger G. Kennedy

“One hundred years from now my administration 
will be known for its art, not for its relief.” When 
President Franklin Roosevelt made this remark, 
was he commenting on the way memory works? 

Or was he reflecting upon the experience that hunger passes and 
shame passes and desperation passes, while a picture or a sculpted 
image lasts? Some might object that necessity trumps all—includ-
ing art, beauty, truth, or happiness—as surely it may, in the 

GOLDEN GATE BRIDGE, BY RAY STRONG, 1934 (SMITHSONIAN AMERICAN ART MUSEUM)
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Roger G. Kennedy is the former director of the National Park Service and 
director emeritus of the National Museum of American History. He has 
written numerous books and articles on the history and architecture of 
the United States. His essay for the 1934: A New Deal for Artists exhibition 
book, from which this article is excerpted, was drawn from his most recent 
book, When Art Worked: The New Deal, Art, and Democracy, designed 
and edited by David Larkin and due out in October 2009 (Rizzoli Inter-
national Publications, Inc.).
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moment. But after a necessitous moment, memory swirls in, car-
rying upon its flood those recollections that assure us that we are 
a species that can transcend necessity. When we again breathe 
freely, creation renews and from creation comes—art.

In his “Rendezvous with Destiny” speech in 1936, Roosevelt 
cited the statement of “an old English judge” that “necessitous 
men are not free men.” He followed the citation with references 
to the specifically American and constitutional grounds for 
respecting values transcending mere subsistence: “Liberty 
requires opportunity to make a living—a living decent according 
to the standard of the time, a living which gives man not only 
enough to live by, but something to live for.” Roosevelt was speak-
ing to a nation still mired in depression, but he was able to remind 
the people that things had improved since he took office three 
years earlier in the hideous winter of 1933–34, when “for too many 
of us life was no longer free; liberty no longer real; men could no 
longer follow the pursuit of happiness.”1 

The New Deal had often stumbled, but it had rallied the people, 
including the artists among them, to a political program based 
upon the conviction that “government in a modern civilization 
has certain inescapable obligations to its citizens, among which 
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are protection of the family and 
the home, the establishment of 
a democracy of opportunity, 
and aid to those overtaken by 
disaster. Artists were among the 
helped, and thus were mobi-
lized among the helping. Their 
paintings emerged from an oth-
erwise dispirited nation as it 
sought an enhanced sense of 
itself, its common heritage, its 
common possibilities, and the 
common ground it occupied.2 

Art came as the response of 
creative citizens to a challenge 
issued to them by their govern-
ment. It offered those who 
needed it a meager living and in 
return they fulfilled a prediction 
made by the sculptor Gutzon 
Borglum to Harry Hopkins, 
Roosevelt’s relief administrator. 
“Aid to the creative ones among 
us,” wrote Borglum, would 
“enliven the Nation’s mind” and 
help “coax the soul of America 
back to life.”3 

The New Deal was built upon 
the precept that the pursuit of happiness of each citizen 
was only possible in freedom from want, fear, hunger, and 
hopelessness. When the Roosevelt administration took 
office in 1933, its first order of business for the arts admin-
istrator, as for those administering programs across the 
country at large, was to make good on Herbert Hoover’s 
assertion that “no one starved.” Next, it sought “to put 
people to work.” The national unemployment rate, which 
had been 3.2 percent of the workforce in 1929, became 25 
percent in 1933—13 million people out of work—and did 
not fall below 10 percent until 1942. In 1934, there were 
many places in the nation, in cities and in the countryside, 
where half the willing workforce could find no jobs.4 In the 
1920s, the affluent had danced the Charleston as the riffs 
of the Jazz Age mocked the miseries of the poor. Rural 
people had been afflicted for six years by crop failures, 
natural disasters, and falling farm prices. In 1933, the farm-
ers had already been trying over and over again for seven 
years to get up and to stay on their feet, with dust and blood 
in their eyes, through the collapse of markets, insect 
plagues, blizzard, and drought.

The industrial system built upon the automobile indus-
try had convulsed and collapsed; long before the stock 
market crash, fewer and fewer people bought cars. The 
industrial system went into its early convulsions as demand fell 
off for steel, rubber, copper, electrical products, and machine 
tools. Then an international banking and credit structure high on 
speculation became dysfunctional. Extravagance and imprudence 
no longer exhilarated corporate headquarters. The stock market 
crashed not once but thrice: in 1929, in 1933, and again in 1937. 

The 1929 crash shook all expectations. The second and third shat-
tered them. Some major industrial stocks lost four-fifths or nine-
tenths of their bubble prices and some never fully recovered. And 
where it mattered, in the real, tangible economy, nothing seemed 
to function properly. Millions were out of work, out of food, out of 
hope. None of the customary systems of society functioned in the 
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face of layoffs, strikes, lockouts, and an unrelenting dust-in-the-
mouth hopelessness.

The American experiment in a respectful government of, by, 
and for the people was in peril. “Fear itself” filled the hearts of the 
nation. Hate was ready to follow fear, as it had in Germany. After 
the Nazi Party won half the seats in the Reichstag in the 1933 elec-

tions, the Dachau concentration camp was set up in March 
and the Enabling Act of March 23 made Hitler dictator. In 
1934, he became supreme commander of the armed forces 
and entered his alliance with Mussolini. Stalin consoli-
dated his power in Russia and sought to export his brand 
of bureaucratized terror.

There were plenty of homegrown führers available. Some 
of them were operating in the Midwest, leading Hubert 
Humphrey to take the threat presented seriously enough to 
read Lawrence Dennis’s The Coming American Fascism 
even before he read Hitler’s Mein Kampf. The disaffected 
turned to the Communist Party, to fascist thuggery such as 
the German-American Bund, to the Ku Klux Klan, and to 
left-wing and right-wing demagogues and ideologues such 
as Floyd Olson, Huey Long, Gerald L. K. Smith, and Father 
Charles E. Coughlin. Some intellectuals took to Marx and 
Engels; others commended Dennis.

1934 was a bleak year. Yet the paintings created for the 
New Deal’s Public Works of Art Project are not bleak. 
They defy depression. Their aye-saying asserts unquench-

able creative life at a time when every effort the people made to 
get things right again seemed to fail. Nothing brought its 
expected outcome. Invisibly and irresistibly, life and its expecta-
tions had come apart—in ways no one fully understood. Yet the 
nation did not dissolve into chaos or civil war. Armed gangs did 
not take over the cities. Country people did not turn to killing 
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each other as they did during the wave of social cannibalism 
that gripped China and Russia, nor did farmers and farm 
laborers join doomed but destructive insurrections. Although 
there was a communist menace and there was a fascist men-
ace, democratic government was sustained. The circle was 
not broken. The community held together—barely. Because 
the result was so uncertain, and because it often seemed as 
if the people could rely upon little more than Roosevelt’s 
positive energy, an assertion of life in art—a demonstration 
of energy through creativity—mattered. The content of that 
art mattered as well. Often paintings such as these told us 
who we were, who we had been, and who we might 
become.  ☐

Endnotes
1. Speech before the 1936 Democratic National Convention, Philadelphia, in Franklin 
Delano Roosevelt, The Public Papers and Addresses of Franklin D. Roosevelt, ed. Samuel 
I. Rosenman, vol. 5, The People Approve, 1936 (New York: Random House, 1938), 
233. (On the Web, see www2.austincc.edu/lpatrick/his2341/fdr36acceptancespeech.
htm.)

2. For government’s obligations, see Robert E. Sherwood, Roosevelt and Hopkins: An 
Intimate History (New York: Harper and Row, 1948), 59.

3. Gutzon Borglum to Harry Hopkins, quoted in Sherwood, Roosevelt and Hopkins, 59.

4. For Herbert Hoover on “no one starved,” see David M. Kennedy, Freedom from 
Fear: The American People in Depression and War, 1929–1945 (Oxford and New York: 
Oxford University Press, 1999), 86; and for “put people to work,” see FDR’s first 
inaugural address, March 1933, Washington, D.C., in Roosevelt, Public Papers and 
Addresses, vol. 2, The Year of Crisis, 1933, 13.
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By Jennifer Dubin

W    hen Sue Tabor stood before 20 fourth-graders at 
Pine Trail Elementary School one morning in April, 
they quickly forgot about the video camera and the 
14 educators in the back of the room. They focused 

instead on Tabor, who said she was going to work with them on “a 
special math challenge.” Tabor explained that after school the 
previous week, some teachers had played one of the students’ 
favorite video games: Guitar Hero. The game, as the students 
already knew, entails playing a “guitar” to the notes of a rock song 
as they appear onscreen. If a player strums enough notes cor-
rectly, she “passes” the song and moves on to the next one. If she 
makes too many mistakes, she loses and the game ends.

Upon hearing that the teachers had played the game, the stu-
dents’ eyes grew wide and they giggled. “Now we know what those 
teachers do on break!” one student said. Tabor told them that the 
principal had not watched the teachers play and that she wanted 
the students to rank them so she could award prizes. Since the 
teachers had not played the same number of games, the students 
would have to figure out each teacher’s rank. “You think you guys 
can help us?” Tabor asked. The students smiled and said yes. The 
teachers in the back of the room smiled, too; the lesson they had 
written was off to a good start. Tabor knew it by heart, and as soon 
as she mentioned Guitar Hero, she had the students hooked.

For three months, Tabor and other teachers at the school in 

Volusia County, Florida, had worked on this particular lesson, an 
introduction to percentages. They reviewed their state’s standards 
and researched ways to teach proportional relationships. They 
created a blog where they posted comments as the lesson devel-
oped. They consulted math education experts. Meeting during 
school and on in-service days, they carefully chose which words 
to use in discussing the mathematics they wanted to teach and 
which numbers to use in creating problems. After Tabor taught the 
lesson, the teachers discussed it at length and then one of them 
wrote a summary of their reflections. They took these steps to craft 
a single lesson, a practice they engage in once a year. This complex 
process has a simple and meaningful name: lesson study.

Teacher-Led Professional Development
In Japan, jugyou kenkyuu—or lesson study—is the most common 
form of professional development among elementary school and 
lower–secondary school (grades 7, 8, and 9) teachers. While in the 
United States it is best known as a means of improving math 
instruction, in Japan lesson study is practiced in all subjects, from 
language studies to physical education. Teachers typically begin 
engaging in lesson study as part of their pre-service training and 
then continue the practice throughout their careers.

Teachers (sometimes in the same grade, sometimes across 
grades) meet regularly over several months to plan what is called 
a research lesson. First, they decide what concept to present to 
students. Then, they consult books and articles that other teachers 

have written. Such resources are available because 
lesson study groups write reports after their 

lessons, and those reports are often pub-
lished and sold in local bookstores. 

Japan’s national curriculum makes 
this exchange of ideas fairly easy; for 
instance, fifth-graders learn the 
same material no matter which 
school they attend.

In developing the lesson, teach-
ers try to agree on every detail, even 
the exact phrasing the teacher will 

use in explaining key concepts. They 
also anticipate students’ responses 

so they can plan how the lesson will 
unfold and be prepared to address stu-

dents’ mistakes. Just as important, teach-
ers focus on hatsumon—posing key ques-

tions to stimulate students’ thinking. With the 

Growing Together
American Teachers Embrace  

the Japanese Art of Lesson Study

Jennifer Dubin is the assistant editor of American 
Educator. Previously, she was a journalist with the 
Chronicle of Higher Education.IL
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right questions, teachers can guide students 
to a better understanding of the prob-
lem at hand, and how it relates to 
previously learned material.

As needed, teachers draw 
on outside experts, known as 
“knowledgeable others,” to 
assist in planning and to 
observe and comment on the 
research lesson. These experts 
include college professors 
who specialize in the relevant 
content area or in cognitive 
science, accomplished teach-
ers from schools that work 
closely with national universities, and 
instructional supervisors. Knowledge-
able others often work with many lesson 
study groups throughout the school year, 
enabling them to contribute not only their 
own content and pedagogical knowledge, 
but that of multiple lesson study groups. 
Since these experts observe research lessons 
frequently, they see examples of excellence and push all their 
groups to improve. 

Early in the planning, teachers set a date for the lesson and 
choose someone in the group to teach it. While that person is 
teaching the lesson on the scheduled day, the other teachers in 
the group observe and take notes on student responses. Often, a 
video camera records the lesson for the teachers to review.

After the lesson has been taught, teachers often spend 60 to 90 
minutes discussing it. The teacher who taught speaks first. She 
tells the group what parts of the lesson worked as planned and 
what could improve. Then the other teachers share their observa-
tions. It’s important to note that the teachers focus their com-
ments on student learning during the lesson, which they all 
planned, not on the teacher who taught it. Lesson study is not a 
tool for teacher evaluation. Members of a lesson study group seek 
to improve their students’ understanding of concepts and, in the 
process, work together to improve their teaching.

Based on their reflections, the teachers revise the lesson, and 
then another member of the group teaches it to another class. This 
time, other teachers (those in the school and elsewhere) plus 
outside experts often are invited to observe the lesson and par-
ticipate in the postlesson discussion. Again, the teacher who 
taught the lesson shares her insights first. Usually, a moderator 
focuses the discussion so observers can share their thoughts on 
what students learned during the lesson. At the end of the discus-
sion, an outside expert usually makes closing remarks. Finally, 
members of the group write a report summarizing their work.

The goal of lesson study is not to create lessons, though that is 
one benefit. The goal is to engage teachers in a research process 
that will help them improve their teaching. Lesson study provides 
a framework for Japanese teachers to think deeply about content 
and student learning. It also gives them an opportunity to learn 
from each other. This contrasts sharply with the isolation that so 
often characterizes teaching in America. Here, teachers have little 
time to exchange ideas for improving instruction and rarely 

observe each other.
Of course, the process is not perfect. A common criticism of 

lesson study (especially as it is practiced in the United States) is 
that if teachers do not have sufficient content knowledge, their 
efforts may not be productive. One obvious way to improve the 
lesson study process: draw on experts from the outset, particularly 
when trying to address a concept that teachers and students alike 
find challenging. 

Teachers in the United States may need to call on “knowledge-
able others” even more often than their peers in Japan. As Cath-
erine Lewis, a lesson study researcher at Mills College, has pointed 
out, U.S. teachers do not have a rich national curriculum, top-
notch textbooks and other instructional materials, informative 
teachers’ manuals, or a long history of practicing lesson study. 
Japanese teachers have all these things, plus even more supports 
(like highly focused teacher preparation), which better prepare 
them to undertake lesson study. 

Of all the supports that U.S. teachers lack, the absence of a 
concise, coherent, common curriculum may be the most prob-
lematic. Here’s how Patsy Wang-Iverson, a lesson study researcher, 
put it:*

In Japan, lesson study is perhaps more viable because the 
curriculum is focused on fewer topics than typical U.S. cur-
ricula. For the sake of comparison, consider that a science 
topic such as pendulums might require 13 to 14 lessons in 
Japan. . . . During these lessons, students have the opportu-
nity to (1) decide what variables they need to investigate, 
(2) design and conduct the experiments, and (3) frequently 
repeat their experiments to test the validity of their find-
ings. . . . In the United States, that same topic may be cov-
ered in one class period to make time for other required 

For a detailed description of lesson study, see “A Lesson Is Like a Swiftly 
Flowing River,” American Educator (Winter 1998), available at www.aft.
org/pubs-reports/american_educator/winter98/Lewis.pdf.

*Patsy Wang-Iverson, “What Makes Lesson Study Unique?” in Building Our 
Understanding of Lesson Study, ed. Patsy Wang-Iverson and Makoto Yoshida 
(Philadelphia: Research for Better Schools, 2005), 19.
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topics. Under which circumstance do we think students 
will develop a deeper understanding of pendulums?

Not surprisingly, Wang-Iverson suggests that schools address 
their overstuffed curricula before undertaking lesson study.

Lesson Study Comes to Volusia County
In the late 1990s, a groundbreaking international video study* of 
eighth-grade classroom instruction brought to light dramatic dif-
ferences between the United States and Japan. Researchers found 
that Japanese teachers often focused their math lessons on devel-
oping students’ understanding of the relationships between 
mathematical concepts, while American teachers often 
focused more on procedures and skills. Although the 

video study could not determine what caused these differences 
in instruction, some of the key factors appeared to be Japan’s 
national curriculum, high-quality instructional materials, and 
commitment to lesson study.

Since 1995, a handful of math education experts in the United 
States have worked with teachers to form lesson study groups. The 
one who brought lesson study to Volusia County is Alice Gill. A 
former elementary teacher, Gill now develops and coordinates 
math professional development courses for the American Federa-
tion of Teachers.

In January 2003, Gill gave a presentation on lesson study at the 
Volusia Teachers Organization (VTO)† office. Soon thereafter, a 
group of eight intermediate-grades teachers from six different 
schools—including Pine Trail Elementary—began meeting regu-
larly. The group conducted its first research lesson (on the dis-
tributive property) in March 2003. After working as a multischool 
team for three years, and developing enough research lessons to 
become comfortable with the process, members of the group 
decided they’d like to develop lesson study groups in each of their 
schools.

Becky Pittard, a member of the VTO and a fourth- and fifth-
grade teacher at Pine Trail, eagerly brought the practice to her 

school. Now enough Pine Trail teachers express interest to form 
at least one and sometimes two or three lesson study groups in 
math, science, and writing each year. Before lesson study, teachers 
didn’t really collaborate on improving instruction. As they passed 
each other in the halls, they might share ideas, but they didn’t 
have a dedicated block of time to discuss content, student learn-
ing, or instructional strategies.

One Friday morning in January 2009,‡ on a teacher profes-
sional development day, Pittard and her colleagues did have that 
time. A lesson study group that focused on writing met in one 
classroom, while in Pittard’s classroom, the lesson study group 

that focused on math began discussing, in 
person, its research lesson. 

The members of the math group, 
composed of teachers in kindergarten 
through fifth grade, had brought 
books and research articles to Pit-
tard’s classroom to help them brain-
storm. A few weeks earlier, they had 
started to share ideas on a blog they 
had created. Pittard, the math group’s 
facilitator, reminded the teachers 
that, as they had already discussed 

on their blog, the upper-grades teach-
ers wanted help teaching percentages, 

“a very difficult concept for children.” 
Pittard was concerned because the topic too 

often has been taught not for understanding but solely 
for doing the operation. 

The teachers scanned the piles of papers and books on their 
desks, including math textbooks from Singapore (which are writ-
ten in English) and Japanese math textbooks, translated into 
English. The books are slender and colorful, with a small number 
of carefully sequenced topics per grade. They hardly resemble 
American math textbooks—tomes that cover too many topics and 
overwhelm students and teachers alike. They also flipped through 
another resource, Thinking Mathematics. Created jointly in 1992 
by AFT teachers and staff, and cognitive scientists from the Uni-
versity of Pittsburgh, Thinking Mathematics is a program that 
teachers can use with any math curriculum. Thinking Mathemat-
ics includes research-based articles, instructional strategies, and 
content knowledge. Nearly all of the school’s 46 teachers are 
trained in it.

As the group searched for a clear way to present the idea of 
percent, Stephanie Hajdin, a first-grade teacher, read aloud from 
one of the books from Singapore: “Percent is out of 100 or per 100.” 
The teachers examined the Singaporean books further. They noted 
how the problems work out evenly so students can focus on 
understanding concepts and not be distracted by computation. 
They also admired the books’ organization. When Hajdin pointed 
out that students first learn ratios, then fractions, then percent-
ages, Pittard said it made sense. Students at Pine Trail and across 
the United States, she said, don’t learn those concepts in that 

Teachers in the U.S. do not have a 
rich national curriculum, top-
notch textbooks, informative 
teachers’ manuals, or a long 
history of practicing lesson study. 
Japanese teachers have all these 
things.

*To learn more about the study, see “Teaching Is a Cultural Activity,” American Educa-
tor 22, no. 4 (Winter 1998), available at www.aft.org/pubs-reports/american_ 
educator/winter98/TeachingWinter98.pdf. The official report of the study is available 
at http://nces.ed.gov/pubs99/1999074.pdf.
†The VTO is jointly affiliated with two national unions: the American Federation of 
Teachers and the National Education Association. VTO President Andrew Spar has 
supported teachers’ participation in lesson study, providing funding for some 
members to attend national lesson study conferences to improve their practice.

‡In December 2008, interested teachers attended an organizational meeting where 
they split into a math group and a writing group. An initial meeting for lesson study 
usually takes place in September. But Pine Trail held it a few months later because 
teachers had to learn a new system for state testing, which cut into their time.



AMERICAN EDUCATOR  |  FALL 2009    33

order—but they should. Ultimately, they decided to craft a lesson 
on ratios.

At the end of the two-and-a-half-hour meeting, Pittard encour-
aged the teachers to continue sharing ideas on the blog. She said 
they would start shaping the lesson at their next session. The 
group met five more times before April 2, the date they had set for 
teaching the research lesson.

Crafting and Teaching the Lesson
Three months later, the teachers had come a long way from their 
January meeting. They had settled on introducing a fourth-grade 
class to the concept of ratio through a story they made up about 
teachers playing Guitar Hero. Pittard and her colleagues had writ-
ten the lesson to illustrate that if players don’t play the same num-
ber of games, their scores must be calculated as ratios—comparing 
the number of songs played with the number of songs passed—to 
determine the winner. The scores from this popular video game 
captured the students’ attention. Ultimately, the game provided 
the teachers with a hook to give students a concrete example of 
ratios.

Sue Tabor, a special education teacher who had participated 
in lesson study for the last three years but had not taught a research 
lesson, volunteered to teach. The group also had kept in touch 
with two “knowledgeable others.” In addition to Gill, Tad 
Watanabe, a professor of mathematics at Kennesaw State Univer-
sity, had offered suggestions during the lesson’s development.

Lesson study groups in the United States often do not follow 
the Japanese model to a tee. Circumstances force them to tweak 
the practice. For instance, at Pine Trail, after Tabor taught the 
official research lesson, the group did not have another member 
of the group teach it. They did revise it, and some teachers plan to 
use it in the future, but unfortunately they were unable to com-
plete two observations, and postobservation discussions, of the 
lesson. Another difference was that the teachers at Pine Trail had 
limited access to outside experts. At times, they struggled with 
some of the concepts—which is to be expected, since 
their goal is to improve their teaching and 
students’ learning of challenging content. 
It would have been helpful to have 
experts observe their research lesson 
and participate in the postlesson 
discussion.

On April  2,  minutes 
before the research les-
s o n  b e g a n ,  Ta b o r 
walked into the class-

room to a round of applause. The 
members of the group cheered along 
with the principal, assistant principal, 
and a teacher from another elemen-
tary school who would moderate the 
postlesson discussion. Tabor admitted 
she was nervous. Pittard told the group 
that Tabor had nothing to be nervous 
about. “Our observations need to be 
focused on the behavior of the children, not 
the teacher,” she said. Pittard reminded her 

colleagues to stay focused on student learning during the 
lesson.

The observers each took a copy of the research lesson, which 
was divided into three columns: one for what the teacher says in 
each step of the lesson, one for anticipated student responses, and 
one for what the teacher says when a student’s work is not on 
target. Each observer received a clipboard for taking notes, and a 
classroom seating chart. Pittard reminded everyone not to talk 
during the lesson, but invited them to walk around the room to 
hear the students’ conversations once group work began.

The students entered the room. Their classroom teacher, who 
had agreed to the students’ participation in the lesson, gave them 
nametags so the observers could match names with faces and 
comments. Those comments would help them understand the 
lesson’s effectiveness.

As planned, Tabor began the lesson by explaining that the 
principal had asked the students to rank the teachers. Then she 
launched into the group’s introduction: “Sometimes, when we 
solve math problems, we have to do a lot of work with adding, 
multiplying, or dividing numbers. But sometimes, mathemati-
cians look at a problem and just use their common sense.” Tabor 
then posted a question on the board: “How can we make it easy 
to compare scores?” She showed the class the first set of players 
and scores:

Mrs. Hajdin passed 4 out of 10 songs.
Mrs. Maccio passed 2 out of 10 songs.
Mrs. Wachtel passed 4 out of 7 songs.

Tabor asked everyone to reflect on the scores and tell her what 
they noticed. Then she asked them to share their strategies for 
ranking the teachers. It appeared that half the students under-
stood the necessary proportional thinking and were keeping the 
ratio of wins to games played the same. They correctly ranked Mrs. 
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Wachtel first, Mrs. Hajdin second, and Mrs. Maccio third. The 
other half of the students used subtraction: they said Mrs. Wachtel 
should be ranked first because her score—4 out of 7—is a loss of 
only 3 games, while Mrs. Hajdin’s score—4 out of 10—is a loss of 
6 games.

Both approaches led students to the right answer. In planning 
the lesson, the teachers accurately predicted that some students 
would use subtraction, which, of course, will not always work. To 
explain why it does not work every time, the teachers wrote what 
Tabor should say. “If Rohit played 99 games and won 97, and if 
Julie had time to play 2 games and won 1, does that make her a 
better player?” Tabor asked. The students said no. Tabor called on 
Chase to explain why: Julie had won only half her games. Tabor 
reminded them to keep each teacher’s ratio 
of wins to total games played the same as 
they compared scores in order to rank the 
teachers. Tabor presented two more sets 
of scores, neither of which resulted in the 
correct ranking if students used subtrac-
tion. Throughout the lesson, Tabor walked 
around the classroom to answer students’ 
questions. The observers walked around, 
too. They listened to students’ conversa-
tions and took notes.

The Postlesson Discussion
After the lesson, Tabor and the observers 
gathered in the school’s media center. 
Tabor spoke first. She said she was glad 
she overcame her fear of teaching before her peers and that the 
students seemed to get the goal.

The teachers congratulated Tabor on teaching the lesson, and 
themselves for successfully anticipating students’ responses, par-
ticularly their misunderstandings. For more than an hour, the 
teachers worked to improve the lesson. They wanted to add dif-
ferent phrases and emphasize certain words to make the lesson 
more effective in reaching all students the next time it was taught. 
At Pine Trail, research lessons don’t sit untouched on a shelf. 
Teachers use them in their own classrooms long after they are 
written.

To improve the lesson further, Pittard e-mailed a summary of 
reflections to the “knowledgeable others,” Watanabe and Gill, and 
asked what worked and what could improve. In Japan, knowledge-
able others usually attend lessons and participate in the postles-
son discussions. Ideally, they would do the same in this country. 
When that is not possible, reflections by e-mail are worth gather-
ing. Gill was pleased that the lesson required the students “to draw 
on what they already knew to compare the scores, instead of just 
giving them a formula to use to make the comparison.”

As for something to improve, Watanabe suggested that the 
teachers avoid using the term “rate” and only use the term “ratio.” 
In this lesson, both terms were used interchangeably, something 
he says happens often because there are no set definitions. He 
finds the following definitions helpful: “A ratio is a comparison of 
two (or more) quantities of the same kind, while a rate is a com-
parison of two different quantities.” Having not observed the les-
son, he can’t say for sure, but it’s possible that some students 
assumed that when pretending a teacher played more games than 

she did, they had to keep her “pace” of winning the same. Indeed, 
one student who struggled with the lesson did seem to be thinking 
along those lines. He commented to another student that one 
teacher, who had played 3 games and won 1, would win once every 
time she played 3 games.

Overall, Watanabe found the core idea of the lesson quite 
strong, saying “the essence of putting ratios in the context of mak-
ing multiplicative comparisons is something that other lesson 
study teams should think deeply about.”

Principal Support
Lesson study at Pine Trail, or at any school, would not happen 
without the principal. When Pittard first approached Barbara 

Paranzino, Pine Trail’s principal for 16 years, Paranzino 
was skeptical: “I really thought it was so time consuming 

and that there would be no way we could pull this off.” Gradually, 
she saw that lesson study was time well spent, that the purpose 
was not to create the perfect lesson. “We’re after the growth,” she 
says. “Teachers communicating with each other about a specific 
math concept—that conversation is an administrator’s dream.”

To make it a reality, at the beginning of each year she and Pit-
tard ask teachers if they want to participate in lesson study. After 
the groups form, she and Pittard schedule dates for teaching each 
of the research lessons. They also work around school vacations 
and state testing to schedule blocks of time—typically 60 to 90 
minutes—for the groups to meet. The days the research lessons 
are taught, Paranzino helps ensure that teachers not involved in 
lesson study can cover the classes of those who do participate. 
Some years, the school uses grant money to pay for substitutes.

In an effort to drum up support for lesson study districtwide, 
Paranzino has invited other principals to observe research lessons 
at Pine Trail. But she emphasizes that interest in the practice must 
come from teachers, not from the top down. “It’s a huge commit-
ment.” Unfortunately, in Volusia County, teachers engage in les-
son study without extra pay and often on their own time.

For Stephanie Hajdin, a first-grade teacher, the practice tops 
all other kinds of professional development. “I’d rather do this any 
day of the week than attend a workshop for three hours and have 
somebody tell me what I should be doing in my classroom,” she 
says. Instead, Hajdin and her colleagues decide what they need 
to work on. Each year, when she signs up for lesson study, she 
looks forward to improving her teaching, to sharing in the cama-
raderie and the sense of accomplishment. “I really enjoy being 
part of the team.”  ☐

“I’d rather do this any day of the week 
than attend a workshop for three 
hours and have somebody tell me 
what I should be doing in my 
classroom.”

–sTePHanie HaJDin,  
First-grade teacher

Interested in starting lesson study at your school? Unsure 
how to begin? Contact Alice Gill in the AFT‘s educational 
issues department at agill@aft.org.
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By Paul R. Gross

If you are an experienced and loving 
teacher, you probably have felt the 
mixed pleasure and pain brought on 
by students’ struggles to display their 

content knowledge and ability to reason. 
Surely, you’ve seen more than a few exam 
answers like these:1

Nero was a cruel tyranny who tor-
tured his subjects by playing the 
fiddle to them.

The sun never set on the British 
Empire because the British Empire 
is in the East and the sun sets in the 
West.

Gravity was invented by Issac Wal-
ton. It is chiefly noticeable in the 
autumn when the apples are falling 
off the trees.

Such answers tickle us because of the 
mismatch between the test-takers’ logic 
and sentence structure—both of which are 
normal—and one or more preposterous 
details of their assertions. The faulty detail 
can be as simple as a misspelled or mis-
used word, or as flagrant as complete fail-
ure to relate cause to effect. Clearly, ordi-
nary competence in language and logic are 
not enough to keep us from coming up 
with howlers—if we don’t know, or we sim-
ply misunderstand, important details of a 
subject we address. 

This is as true in science education as 
elsewhere in life. And so, in the course of a 
long career as a biologist and teacher of 
science, I have often been troubled by the 
endless debate about whether we should 

focus on teaching scientific reasoning 
instead of science content, or at least more 
reasoning and less content. But to compre-
hend science as a responsible citizen, and 
certainly to succeed in any science-related 
career, both content and reasoning are 
essential. The absence of one or the other 
may produce laughter, but not good 
science.

Arguments for much more reasoning 
and less content (a necessary tradeoff, 
given time constraints) in K–12 science 
began decades ago. Eventually, the idea 
became a catch phrase. “Content” was 
redefined to function as a synonym for 
“facts” (or “mere facts”) independent of 
reasoning. But defining content that way is 
nothing more than a rhetorical move. No 
honest study of science textbooks and les-
sons nationwide, not even from the 
benighted decades preceding the launch 

Learning Science
Content—With Reason

of Sputnik, could conclude that just memo-
rizable facts were required, with no reason-
ing. Facts were (and are) taught, and facts 
must be learned if any intellectual disci-
pline is to be understood and practiced. 
The rhetorical flourishes of those arguing 
for more scientific reasoning have affected 
some people’s perceptions, but they have 
not changed the reality that, in general, sci-
ence curricula have never been exclusively 

As the author writes, “To comprehend 
science as a responsible citizen, and 
certainly to succeed in any science-
related career, both content and 
reasoning are essential.” Both are also 
essential to comprehending the beauty 
of the world around us, as shown in 
these photos.

Paul R. Gross is University Professor of Life Sci-
ences, emeritus, and former vice president and 
provost, University of Virginia. He has taught 
science at New York University, Brown Univer-
sity, the Massachusetts Institute of Technology, 
and the University of Rochester, and is former 
director and president of the Marine Biological 
Laboratory, Woods Hole, Massachusetts. He has 
written numerous articles and books on topics 
ranging from molecular biology of development 
to the intersection of science and culture.
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lists of facts to be memorized, devoid of the 
means by which those facts are discovered 
and gain acceptance in the scientific 
community.

Before we go any further then, let’s pause 
for a moment to consider just what scientific 
reasoning is. What differentiates scientific 
from, say, historical reasoning? Other than 
the content being reasoned about, I can’t 
think of anything. So, I turn to the distin-
guished philosopher of science and episte-
mologist Susan Haack to discover that the 
notion of a species of reasoning unique to 
science is unfounded. Haack writes:2

Scientific inquiry is continuous with 
the most ordinary of everyday 
empirical inquiry. There is no mode 
of inference, no “scientific method,” 
exclusive to the sciences and guar-
anteed to produce true, more nearly 
true, or more empirically adequate 
results. . . . And, as far as [science] is 
a method, it is what historians or 
detectives or investigative journal-
ists or the rest of us do when we 
really want to find something out: 
make an informed conjecture about 
the possible explanations of a puz-
zling phenomenon, check how it 
stands up to the best evidence we 
can get, and then use our judgment 
whether to accept it, more or less 
tentatively, or modify, refine, or 
replace it.

The practices of good science are distin-
guished by that “informed conjecture”—by 
a special dependence upon technology 
(e.g., instruments that broaden the human 
range of perception), and by especially 
strong and well-enforced rules having to 
do with scrutiny and testing of claims and 
reproducibility of results. But they are not 
distinguished by an array of clearly identi-
fiable, cognitively unique  forms of 
reasoning. 

What, then, is to be understood by sci-
entific reasoning? The answer cannot be 
very deep because the question isn’t. Sci-
entific reasoning is using, within a frame-
work of scientific content, certain general 
cognitive abilities that develop over time or 
can be encouraged in most learners. So, 
there is not much that is exclusively scien-
tific about such reasoning other than the 
fact that one is thinking about scientific 
content. Scientific reasoning is a sibling to, 
if not perfectly congruent with, historical 

reasoning, which is the use of rather similar 
cognitive basics in the context of records 
and commentary on the past. Scientific 
reasoning is deployed with hypotheses and 
observations about nature. It has other 
siblings as well: social, artistic, and literary 
reasoning for example. 

For those concerned with school sci-
ence, however, the 
issue is scientific rea-
soning, and the goal 
is to encourage bet-
ter-informed ratio-
nality about nature, 
to bring about sig-
nificant improve-
ments in students’ 
scientific literacy 
and problem-solv-
ing skills. Of course, 
there is an enor-
mous literature on 
the question of how 
to do this. At least 
among cognitive 
scientists, the con-
sensus seems to be that, “Just as it makes 
no sense to try to teach factual content 
without giving students opportunities to 
practice using it, it also makes no sense to 
try to teach critical thinking devoid of fac-
tual content.”3 Here, for “critical thinking,” 
we may substitute “scientific reasoning.” In 
the relevant contexts, they mean almost 
the same thing: scientific reasoning in the 
absence of scientific content doesn’t make 
sense. Reasoning and content are not prac-
tically and neatly separable.

So, why isn’t this old debate over? Why, 
in fact, is there a debate at all? Unfortu-
nately, it seems that ongoing, important, 
and often laudable research on how to 
increase students’ science learning contin-
ues to stumble, from time to time, over 
these questions. This is understandable: 
any researcher will tell you that gathering 
data about complex processes is the easy 
part; making sense of those data, and draw-
ing sound conclusions from them, is the 
hard part. So it’s important that all of us, 
not just researchers but teachers too, ques-
tion studies that reach puzzling conclu-
sions. Not because we, individually, will 
thereby come up with the “right” conclu-
sion, but because such questioning is 
essential to ensuring that the research 
enterprise as a whole advances both intel-
lectually and in its eventual usefulness.

Scientific Reasoning  
in Science Magazine
Let’s examine a recent article on scientific 
content and scientific reasoning that has 
received a good bit of coverage in the popu-
lar media. A few months ago, Science—one 
of the two most selective international sci-
ence journals (the other one is Nature)—

published an important article on a 
study of learning and scientific rea-
soning.4 This fascinating paper has 
some perplexing features. Science’s 
summary of the study declares that 
“comparisons of Chinese and U.S. 
students show that content knowl-
edge and reasoning skills diverge.” 
Now, such a showing ought not be 
in the least surprising to the journal’s read-
ers. “Divergence” is both innocuous and 
ambiguous; and as we have suggested, the 
claim that content and reasoning can be 
separated has been afloat for many years.

Nevertheless, however commonplace 
the statement, such a divergence would be 
very important if it were (1) anything more 
than a simple acknowledgement that con-
tent knowledge and basic reasoning skills 
are in some respects different things, and 
(2) demonstrated unequivocally to exist, 
with rigor typical of most Science articles. 
It would be very important not only for 
K–12 science, but for all education. But as 
noted, the article, titled “Learning and Sci-
entific Reasoning,” offers some puzzles. 
They need to be considered before the 
study’s conclusions are taken as grounds 
for action. Among the firmest—and yet 
most questionable—conclusions offered 
in the text is this:5

LAVA, PHOTO BY J.D. GRIGGS, 02/25/83, JG928, COURTESY OF THE U.S. GEOLOGICAL SURVEY
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writing characteristic 
of Science and Nature, 
a claim such as that is 
usually taken very 
seriously. Should this 
one be so taken? To 
find out, we must 
examine the data pro-
vided and (using sci-
entific reasoning and 
relevant content from 
cognitive science) 
judge the conclusions 
drawn from them. 

Data for this study 
come from three tests—two of physics 
knowledge and one of general scientific 
reasoning—administered to freshmen col-
lege students in the United States and China. 
All the students were science or engineering 
majors, enrolling in college-level, calculus-
based physics—but the tests were given 
before instruction began. The authors, Lei 
Bao and a dozen colleagues, specify care-
fully the differences between these two 
cohorts. The most striking is their precollege 
preparation in physics. Bao et al. explain 
that “Chinese students go through rigorous 
problem-solving instruction in all STEM 
subject areas throughout most of their K–12 
school years and become skillful at solving 
content-based problems.” This is, as they 
note, in sharp contrast with K–12 science 
education for U.S. students, who probably 
spend less time in science study of any kind 
and, obviously, less time doing physics. As 
the authors observe, “The amount of 

instructional time and the 
amount of emphasis on 
conceptual physics under-
standing and problem-solv-
ing skills are very different 
in the two countries.” This, 
they claim, provides what is, 
in effect, a controlled experi-
ment, an opportunity to see 
if these variations in content 
learning—intensive, as in 
China, versus (relatively) 
superficial, as in the United 
States—have an impact on 
scientific reasoning ability.

Here, however, the first 
puzzle of the study appears. 
The description of content 
learning in the United 
States indicates correctly 
that it is less intense and 

more varied than in China. But then it 
claims incorrectly that “scientific reasoning 
is not explicitly taught in schools in either 
country.”*

Had this paper, with its generous online 
supplementation and other publications 
from the lead author’s research group, failed 
to show awareness of the current research 
literature in K–12 science education, their 
claim that scientific reasoning is not being 
taught would have been understandable. 
And, thus understood by us, the study would 
simply have been … dismissible. Why? 
Because it is not true that scientific reason-
ing is not taught in U.S. schools. 

Scientific reasoning goes by different 
names, one of the most favored being 
“inquiry,” as in “inquiry-based learning.” 
This type of science study is so well estab-
lished in the United States that a book-
length retrospective  and prospective 
account of inquiry-based science stan-
dards was published by the U.S. National 
Research Council nearly a decade ago.6 
One need only skim the most recent Ford-
ham Institute study on state science stan-
dards to discover that scientific reasoning 
and “science process” skills, which focus 
on reasoning, are key elements of the 
expectations for student proficiency in 
nearly all of the 50 state standards 
reviewed.7 The current Science Framework 

*In the article, scientific reasoning is not simply 
subsumed under content; the authors’ use of “content” 
implies that, for them, the word means something like 
just the facts, ma’am—with perhaps some very ad hoc 
concept juggling and problem solving.

The current style of content-rich 
STEM [science, technology, engi-
neering, and mathematics] educa-
tion, even when carried out on a rig-
orous level, has little impact on the 
development of students’ scientific 
reasoning abilities. It seems that it is 
not what we teach, but rather how we 
teach, that makes a difference in stu-
dent learning of higher-order abili-
ties in scientific reasoning.

To restate: “Higher-order scientific rea-
soning” cannot be achieved by science 
learners if they are offered only “content-
rich” science courses and programs. Some-
thing different must be added or substi-
tuted. That something, according to the 
authors, is the explicit teaching of scientific 
reasoning, here (as commonly elsewhere) 
identified with inquiry learning. Within the 
enforced economies and terseness of the 
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for the National Assessment of Educational 
Progress reflects that preoccupation by 
dividing attention between science content 
and science practices. Of the latter, there 
are four, each preceded by an action verb: 
“identifying” or “using.” The “using” state-
ments are explicit reasoning skills.8 

However, Bao et al.’s own print and 
online bibliographies do cite appropriate 
contemporary resources, indicating that 
they have at least come in contact with the 
evidence of inquiry-based learning in U.S. 
science classrooms. Hence, their statement 
that scientific reasoning is not taught in 
U.S. schools is not due to ignorance. It is 
just a misconception of current, standards-
based science curricula nationwide, and of 
the associated literature.

Now the second puzzler appears. 
Although they refer to the physics courses, 
especially those taken by the Chinese stu-
dents, as emphasizing “conceptual physics 
understanding and problem-solving skills,” 
the researchers do not, apparently, include 
conceptual understanding and problem-
solving skills within scientific reasoning 
ability. For this old subscriber to Science, 
such an exclusion is incomprehensible.

These lapses are regrettable because they 
create a flaw in the experimental design, the 
clarity of which depends upon the assump-
tion that neither American nor Chinese 
K–12 science students receive special 
instruction in scientific reasoning. In reality, 
all available evidence indicates that both 
U.S. and Chinese students receive at least 
some instruction in scientific reasoning. 

The authors believe that in these other-
wise matched student groups, the students 
have a clear, large difference in exposure to 

and study of physics content. If this is so 
(and there is no reason to doubt it), and 
assuming that a good test of scientific rea-
soning not tied to content—i.e., not domain 
specific—is available, then it is possible to 
test for the impact of that difference in 
studying content on scientific reasoning 
ability. More specifically, it is possible to 
test for that holy grail of instruction, trans-
ferability. Transferability would mean that 
students become good scientific thinkers 
generally—that their reasoning transfers 
smoothly across all scientific subjects—
instead of being limited to the specific 
areas they have studied. In the authors’ 
words, they are interested in “domain-
general reasoning skills such as the abilities 
to systematically explore a problem, to for-
mulate and test hypotheses, to manipulate 
and isolate variables, and to observe and 
evaluate the consequences.” So the ulti-
mate question that Bao et al. undertake to 
answer is whether the Chinese students, 
recipients of prolonged and intense con-
tent instruction, are rendered thereby more 
adept at general scientific reasoning than 
the Americans, whose study of physics and 
other science content has been slight by 
comparison.

Performance in Physics and in 
Scientific Reasoning
To answer this question, Bao et al. 
employed three good tests: the Force Con-
cept Inventory (FCI),9 which assesses 
knowledge of introductory Newtonian 
mechanics; the Brief Electricity and Mag-
netism Assessment (BEMA), which 
assesses understanding of electricity 
(including circuits) and magnetism; and 
the Lawson Classroom Test of Scientific 
Reasoning (LCTSR), which is supposed to 
assess capacity for general scientific rea-
soning (that is, with minimal domain 
dependence). To the authors’ credit, the 

Science print article and its online 
supplements together provide 
adequate detail on the tests, the 
testing, and their results. 

Outcomes of the tests are 
clear enough in the article and 
supplements. On the FCI, Chi-
nese students performed very 
well, with a narrow distribution 
of scores centered on an impres-
sive mean of 86 percent. The 
American scores were much 
more broadly distributed around 

a mean of 49 percent—distinctly failing. On 
the BEMA, Chinese students scored at a 
mean of 66 percent, but the Americans 
scored at a mean of 27 percent—not much 
better, Bao et al. note, than would have 
been produced by randomly choosing  
answers to the test questions. These tests 
distinguished the two populations of test 
takers, one well prepared in physics, the 
other not.* 

So far, no surprises. These results look 
like those of recent international assess-
ments in science and mathematics, in 
which the performance of U.S. students, 
especially in the higher grades, is at best 
undistinguished and sometimes awful. 

The results of testing scientific reason-
ing with the LCTSR, however, were surpris-
ing (to me). Both groups showed a mean of 
74 percent and their score distributions 
were effectively identical.† Such results 
should be surprising, at least to many Sci-
ence readers; but the authors, instead of 
being surprised and questioning the 
results, conclude that they have a substan-
tive finding regarding scientific reasoning, 

*Numbers of test takers in all cases were large enough 
for there to be no doubt that the calculated means are 
properly representative.
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with the same volume of liquid, and vice 
versa. The test questions have mainly to do 
with logic and efficient thinking. On such 
a test, both cohorts perform at a solid aver-
age level; and what’s more, the population 
score distributions are essentially the same. 
What is going on?

Bao et al. conclude that even though the 
Chinese students know physics content, 
their scientific reasoning is no better than 
that of the American students. As for scien-
tific reasoning that is transferable and 
immediately usable in real-world prob-
lems, the authors evidently believe, Chi-
nese students are 
no better equipped 
than those content-
challenged10 U.S. 
students.

But this is not a 
necessary, or even 
the most  l ikely, 
conclusion. A more 
likely one is that 
the LCTSR is test-
ing the students’ 
reasoning about 
certain simple but 
unfamiliar natural 
situations. So, it 
requires all the test 
takers, Chinese and 
American, to rely 
on the same rela-
tively slow, rela-
tively inefficient 
kind of thinking.

The findings of 
cognitive science tell us that domain 
knowledge strongly affects the quality of 
thinking. Specifically, its accuracy, speed, 
and efficiency—manipulating information 
in working memory—are much improved 
when relevant, quickly recoverable knowl-
edge (procedural as well as factual) is 
stored in long-term memory. So, if you 
want to solve physics problems quickly and 
efficiently, you’ll need a good bit of factual 
and procedural physics knowledge stored 
in your long-term memory. How is such 
knowledge stored in long-term memory? 
By solving physics problems! Bit by bit, you 
tackle more and more complex problems, 
and eventually you have in long-term 
memory a rich domain of physics facts, 
procedures, and tricks of thought about 
concepts of physics and physicslike 
problems. 

Faced, then, with a new problem in 
physics, you ordinarily will retrieve exam-
ples of correct solutions to similar prob-
lems encountered earlier—not the primi-
tive steps of the required solution (which 
from practice have become automatic for 
you, like number facts in arithmetic). You 
will automatically import from long-term 
memory into working memory whole 
chunks of problem types and solutions, 
and thus will be able to grab quickly the 
appropriate one for application to the new 
problem. Your thinking (or reasoning) will 
be efficient. You will do well in a written or 

†The possibility that this result was due to a ceiling 
effect occurs immediately to any test-hardened teacher, 
and these energetic authors did not fail to consider it. 
Online supplementary material includes their 
independent investigation of that possibility, with the 
result that no ceiling effect is a likely cause of the 
near-identical, 74 percent mean scores for Chinese and 
American college freshmen who are preparing to major 
in science or engineering.

worthy of their most important comments 
and recommendations. They believe the 
results indicate that content instruction, in 
physics anyway, cannot inculcate good 
scientific reasoning abilities and habits. 
More study of content leads only to more 
“content knowledge,” not to that higher-
level, general competence in science that 
is so eagerly sought. 

I am sorry that the authors were not 
surprised by their findings. Had they been 
surprised, they might have questioned 
their immediate response to the data and 
considered alternative conclusions. The 
job of considering alternatives, then, is left 
to others.

What Do the Scores Mean?
Let’s set aside, for the moment, our earlier 
concern about whether U.S. and Chinese 
students are actually taught scientific rea-
soning in an explicit way, and take the 
information presented by the authors at 
face value. It indicates that the training 
Chinese students receive before coming to 
college includes much practice with impor-
tant concepts of physics and with skills 
needed to solve physics problems. Tested 
at the end of this period for knowledge of 
two central physics topics, the Chinese 
students perform handsomely. Not only 
are they ready for calculus-based college 
physics, but they can be said, in all justice, 
to know physics, at least the physics taught 
in high school. For students in the United 
States, the situation is essentially the oppo-
site. Only a third or so of them take high 
school physics. The rest learn physics, if at 
all, from the general science of grades K–8 
and via the (derived) physics components 
of other science disciplines, such as biol-
ogy, chemistry, Earth science, or environ-
mental studies. These students perform 
poorly on the physics tests. They cannot be 
said to know physics.

Now, both cohorts are tested with the 
LCTSR for their ability to think about very 
simple natural (i.e., scientific) situations, 
for example: explaining the results of filling 
graduated cylinders of differing diameter 
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ing the LCTSR is supposed to test. 
One final possibility is a rather unhappy 

one, but perhaps the most realistic. It could 
be that, because the students were matched 
in every relevant characteristic except 
physics “content” instruction, these two 
large student groups, Chinese and Ameri-
can, have simply reached the same level of 
general reasoning ability (or have the same 
average IQ).12 So the LCTSR, with its gen-
eral reasoning questions, is simply estab-
lishing a good control (a proper isolation 
of variables)—that is, these two groups of 
rather well-matched students are of about 
the same general cognitive ability. And, of 
course, that would be comforting in some 
ways, but also no surprise.

Whichever conclusion(s) may be cor-
rect, what we can say with confidence is 
that these Chinese students learned 
enough physics in school. The U.S. stu-
dents—who, having opted already for sci-
ence, technology, engineering, and math-
ematics majors in college, are among our 
best science students—have not learned 
enough. That should be a big worry, and 
not only because, as we saw at the outset, 
reasoning devoid of content can prompt a 
chuckle or two.   ☐
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reducing the possible interfer-
ence from understandings of 
content knowledge.” But if so, 
both cohorts will handle most 
of the questions on the LCTSR 
(or any challenge like it) the 
same way: they will need to 
think through each question 
from scratch—to find the best 
answer starting from elemen-
tary principles. That kind of 
thinking is slower and more 
error-prone than the thinking 
available to a physics-savvy Chi-
nese student taking the FCI or 
the BEMA. 

There is one remote possibil-
ity to consider. Going back to the 

first puzzle, suppose 
that, contrary to a crucial 
a s s u m p t i o n  o f  t h e 
authors, the American 
students do receive con-
siderable instruction in 
what they call scientific 
reasoning, and (as the 
authors claim) the Chi-
nese students do not. 
That could, in principle, 
account for the Ameri-
cans performing well 
enough to match the 
performance of the Chi-
nese. But any such expla-
nation seems extremely 
u n l i k e l y ,  g i v e n  t h e 

remarkable congruence of the LCTSR 
results of both groups. And, if the Chinese 
students had really received no scientific 
reasoning instruction, we would expect the 
Americans, who have been taught scien-
tific inquiry, to do much better on the 
LCTSR than the Chinese. They did not.

That, of course, raises the possibility 
hinted at by the second puzzle. It could be 
that both the U.S. and Chinese students 
receive instruction in scientific reasoning. 
Bao et al. may not define it that way, but an 
“emphasis on conceptual physics under-
standing and problem-solving skills,” 
which is how they characterize the Chinese 
instruction, sounds to me like plenty of 
emphasis on reasoning about science—
and about much else! So it may be that both 
the Chinese intensive approach and the 
American nonintensive approach are 
equally effective—or equally ineffective—in 
teaching the domain-independent reason-

a real-world test.11 Reasoning works with 
content!

Here, then, is an alternative view of the 
Bao et al. results. The Chinese students 
know physics. The American students 
don’t. Now both groups face a different 
challenge—different enough from the 
standard physics problems so that the Chi-
nese students’ superior conceptual and 
problem-solving skills in physics provide 
no immediate advantage. The new chal-
lenge is to think about problems of a very 
simple scientific character, but in forms 
and subject-matter domains that neither 
group has encountered before. As the 
authors explain in their online supple-
mentary materials, the LCTSR “measures 
fundamental reasoning components with 
simple context scenarios that do not 
require complex content understanding. 
This test design can improve the measure-
ment of the basic reasoning abilities by 
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