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By Richard E. Clark,  
Paul A. Kirschner, and John Sweller

Disputes about the impact of instructional guidance 
during teaching have been ongoing for more than a 
half century.1 On one side of this argument are those 
who believe that all people—novices and experts 

alike—learn best when provided with instruction that contains 
unguided or partly guided segments. This is generally defined 
as instruction in which learners, rather than being presented 
with all essential information and asked to practice using it, must 
discover or construct some or all of the essential information for 
themselves.2 On the other side are those who believe that ideal 
learning environments for experts and novices differ: while 
experts often thrive without much guidance, nearly everyone 
else thrives when provided with full, explicit instructional guid-
ance (and should not be asked to discover any essential content 
or skills).3

Our goal in this article is to put an end to this debate. Decades 
of research clearly demonstrate that for novices (comprising virtu-
ally all students), direct, explicit instruction is more effective and 
more efficient than partial guidance.4 So, when teaching new 
content and skills to novices, teachers are more effective when 
they provide explicit guidance accompanied by practice and 
feedback, not when they require students to discover many 
aspects of what they must learn. As we will discuss, this does not 
mean direct, expository instruction all day every day. Small group 
and independent problems and projects can be effective—not as 
vehicles for making discoveries, but as a means of practicing 
recently learned content and skills.

Before we describe this research, let’s clarify some terms. 
Teachers providing explicit instructional guidance fully explain 
the concepts and skills that students are required to learn. Guid-
ance can be provided through a variety of media, such as lectures, 
modeling, videos, computer-based presentations, and realistic 
demonstrations. It can also include class discussions and activi-
ties—if the teacher ensures that through the discussion or activity, 
the relevant information is explicitly provided and practiced. In 
a math class, for example, when teaching students how to solve a 
new type of problem, the teacher may begin by showing students 
how to solve the problem and fully explaining the how and why 
of the mathematics involved. Often, in following problems, step-
by-step explanations may gradually be faded or withdrawn until, 
through practice and feedback, the students can solve the prob-
lem themselves. In this way, before trying to solve the problem on 
their own, students would already have been walked through both 
the procedure and the concepts behind the procedure.

In contrast, those teachers whose lessons are designed to offer 
partial or minimal instructional guidance expect students to dis-
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cover on their own some or all of the concepts and skills they are 
supposed to learn. The partially guided approach has been given 
various names, including discovery learning,5 problem-based 
learning,6 inquiry learning,7 experiential learning,8 and construc-
tivist learning.9 Continuing the math example, students receiving 
partial instructional guidance may be given a new type of problem 
and asked to brainstorm possible solutions in small groups with 
or without prompts or hints. Then there may be a class discussion 
of the various groups’ solutions, and it could be quite some time 
before the teacher indicates which solution is correct. Through 
the process of trying to solve the problem and discussing different 
students’ solutions, each student is supposed to discover the 
relevant mathematics. (In some minimal guidance classrooms, 
teachers use explicit instruction of the solution as a backup 
method for those students who did not make the necessary dis-
coveries and who were confused during the class discussion.) 
Additional examples of minimally guided approaches include 
(1) inquiry-oriented science instruction in which students are 
expected to discover fundamental principles by mimicking the 
investigatory activities of professional researchers,10 and (2) medi-
cal students being expected to discover well-established solutions 
for common patient problems.11

Two bodies of research reveal the weakness of partially and 
minimally guided approaches: research comparing pedagogies, 
and research on how people learn. The past half century of empiri-
cal research has provided overwhelming and unambiguous evi-
dence that, for everyone but experts, partial guidance during 
instruction is significantly less effective and efficient than full 
guidance. And, based on our current knowledge of how people 
learn, there is no reason to expect that partially guided instruction 
in K–12 classrooms would be as effective as explicit, full 
guidance.

I. Research Comparing Fully  
Guided and Partially Guided Instruction
Controlled experiments almost uniformly indicate that when 
dealing with novel information (i.e., information that is new to 
learners), students should be explicitly shown what to do and how 

to do it, and then have an opportunity to practice doing it while 
receiving corrective feedback.12 A number of reviews of empirical 
studies on teaching novel information have established a solid 
research-based case against the use of instruction with minimal 
guidance. Although an extensive discussion of those studies is 
outside the scope of this article, one recent review is worth noting: 
Richard Mayer (a cognitive scientist at the University of California, 
Santa Barbara) examined evidence from studies conducted from 
1950 to the late 1980s comparing pure discovery learning (defined 
as unguided, problem-based instruction) with guided forms of 
instruction.13 He suggested that in each decade since the mid-
1950s, after empirical studies provided solid evidence that the 
then-popular unguided approach did not work, a similar 
approach soon popped up under a different name with the cycle 
repeating itself. Each new set of advocates for unguided 
approaches seemed unaware of, or uninterested in, previous 
evidence that unguided approaches had not been validated. This 
pattern produced discovery learning, which gave way to experi-

ential learning, which gave way to problem-based and inquiry 
learning, which has recently given way to constructivist instruc-
tional techniques. Mayer concluded that the “debate about dis-
covery has been replayed many times in education, but each time, 
the research evidence has favored a guided approach to learn-
ing.”14 (To learn about these effective guided approaches, please 
see the companion article by Barak Rosenshine that begins on 
page 12.)

Evidence from well-designed, properly controlled experimen-
tal studies from the 1980s to today also supports direct instruc-
tional guidance.15 Some researchers16 have noted that when 
students learn science in classrooms with pure-discovery meth-
ods or with minimal feedback, they often become lost and frus-
trated, and their confusion can lead to misconceptions. Others17 
found that because false starts (in which students pursue mis-
guided hypotheses) are common in such learning situations, 
unguided discovery is most often inefficient. In a very important 
study, researchers not only tested whether science learners 
learned more via discovery, compared with explicit instruction, 
but also, once learning had occurred, whether the quality of 
learning differed.18 Specifically, they tested whether those who 
had learned through discovery were better able to transfer their 
learning to new contexts (as advocates for minimally guided 
approaches often claim). The findings were unambiguous. Direct 
instruction involving considerable guidance, including exam-
ples, resulted in vastly more learning than discovery. Those rela-

Research has provided overwhelming 
evidence that, for everyone but  
experts, partial guidance during  
instruction is significantly less  
effective than full guidance.
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tively few students who learned via discovery showed no signs of 
superior quality of learning.

In real classrooms, several problems occur when different 
kinds of minimally guided instruction are used. First, often only 
the brightest and most well-prepared students make the discov-
ery. Second, many students, as noted above, simply become 
frustrated. Some may disengage, others may copy whatever the 
brightest students are doing—either way, they are not actually 
discovering anything. Third, some students believe they have 
discovered the correct information or solution, but they are mis-
taken and so they learn a misconception that can interfere with 
later learning and problem solving.19 Even after being shown the 
right answer, a student is likely to recall his or her discovery—not 
the correction. Fourth, even in the unlikely event that a problem 
or project is devised that all students succeed in completing, 

approach tend to like it even though they learn less from it. It 
appears that guided instruction helps less-skilled learners by 
providing task-specific learning strategies. However, these strate-
gies require learners to engage in explicit, attention-driven effort 
and so tend not to be liked, even though they are helpful to 
learning.

Similarly, more-skilled learners who choose the more-guided 
version of a course tend to like it even though they too have 
selected the environment in which they learn less. The reason 
more guidance tends to be less effective with these learners is that, 
in most cases, they have already acquired task-specific learning 
strategies that are more effective for them than those embedded 
in the more-guided version of the course. And some evidence 
suggests that they like more guidance because they believe they 
will achieve the required learning with minimal effort.

If the evidence against minimally guided approaches is so 
strong, why is this debate still alive? We cannot say with any 
certainty, but one major reason seems to be that many edu-
cators mistakenly believe partially and minimally guided 

instructional approaches are based on solid cognitive science. 
Turning again to Mayer’s review of the literature, many educators 
confuse “constructivism,” which is a theory of how one learns and 
sees the world, with a prescription for how to teach.22 In the field 
of cognitive science, constructivism is a widely accepted theory 
of learning; it claims that learners must construct mental repre-
sentations of the world by engaging in active cognitive processing. 
Many educators (especially teacher education professors in col-
leges of education) have latched on to this notion of students 
having to “construct” their own knowledge, and have assumed 
that the best way to promote such construction is to have students 
try to discover new knowledge or solve new problems without 
explicit guidance from the teacher. Unfortunately, this assump-
tion is both widespread and incorrect. Mayer calls it the “construc-
tivist teaching fallacy.” Simply put, cognitive activity can happen 
with or without behavioral activity, and behavioral activity does 
not in any way guarantee cognitive activity. In fact, the type of 
active cognitive processing that students need to engage in to 
“construct” knowledge can happen through reading a book, lis-
tening to a lecture, watching a teacher conduct an experiment 
while simultaneously describing what he or she is doing, etc. 
Learning requires the construction of knowledge. Withholding 
information from students does not facilitate the construction of 
knowledge.

II. The Human Brain: Learning 101
In order to really comprehend why full instructional guidance is 
more effective and efficient than partial or minimal guidance for 
novices, we need to know how human brains learn. There are two 
essential components: long-term memory and working memory 
(often called short-term memory). Long-term memory is that big 
mental warehouse of things (be they words, people, grand philo-
sophical ideas, or skateboard tricks) we know. Working memory 
is a limited mental “space” in which we think. The relations 
between working and long-term memory, in conjunction with the 
cognitive processes that support learning, are of critical impor-
tance to developing effective instruction.

Our understanding of the role of long-term memory in human 

minimally guided instruction is much less efficient than explicit 
guidance. What can be taught directly in a 25-minute demonstra-
tion and discussion, followed by 15 minutes of independent 
practice with corrective feedback by a teacher, may take several 
class periods to learn via minimally guided projects and/or prob-
lem solving.

As if these four problems were not enough cause for concern, 
there is one more problem that we must highlight: minimally 
guided instruction can increase the achievement gap. A review20 of 
approximately 70 studies, which had a range of more- and less-
skilled students as well as a range of more- and less-guided 
instruction, found the following: more-skilled learners tend to 
learn more with less-guided instruction, but less-skilled learners 
tend to learn more with more-guided instruction. Worse, a num-
ber of experiments found that less-skilled students who chose or 
were assigned to less-guided instruction received significantly 
lower scores on posttests than on pretest measures. For these 
relatively weak students, the failure to provide strong instructional 
support produced a measurable loss of learning. The implication 
of these results is that teachers should provide explicit instruction 
when introducing a new topic, but gradually fade it out as knowl-
edge and skill increase.

Even more distressing is evidence21 that when learners are 
asked to select between a more-guided or less-guided version of 
the same course, less-skilled learners who choose the less-guided 



AmERIcAN EdUcATOR  |  SPRING 2012    9

cognition has altered dramatically over the last few decades. It is 
no longer seen as a passive repository of discrete, isolated frag-
ments of information that permit us to repeat what we have 
learned. Nor is it seen as having only peripheral influence on 
complex cognitive processes such as critical thinking and problem 
solving. Rather, long-term memory is now viewed as the central, 
dominant structure of human cognition. Everything we see, hear, 
and think about is dependent on and influenced by our long-term 
memory.

A seminal series of studies23 on chess players, for example, 
demonstrated that expert players perform well even in “blitz” 
games (which are played in five minutes) because they are not 
actually puzzling through each move. They have tens of thousands 
of board configurations, and the best move for each configuration, 
stored in long-term memory. Those configurations are learned by 
studying previous games for 10 years or more. Expert players can 
play well at a fast pace because all they are doing is recalling the 

best move—not figuring it out. Similar studies of how experts 
function have been conducted in a variety of other areas.24 Alto-
gether, the results suggest that expert problem solvers derive their 
skill by drawing on the extensive experience stored in their long-
term memory in the form of concepts and procedures, known as 
mental schemas. They retrieve memories of past procedures and 
solutions, and then quickly select and apply the best ones for solv-
ing problems. We are skillful in an area if our long-term memory 
contains huge amounts of information or knowledge concerning 
the area. That information permits us to quickly recognize the 
characteristics of a situation and indicates to us, often immedi-
ately and unconsciously, what to do and when to do it. (For 
instance, think about how much easier managing student behav-
ior was in your fifth year of teaching than in your first year of teach-
ing.) Without our huge store of information in long-term memory, 
we would be largely incapable of everything from simple acts such 
as avoiding traffic while crossing a street (information many other 
animals are unable to store in their long-term memory), to com-
plex activities such as playing chess, solving mathematical prob-
lems, or keeping students’ attention. In short, our long-term 
memory incorporates a massive knowledge base that is central to 
all of our cognitively based activities.

What are the instructional consequences of long-term mem-
ory? First and foremost, long-term memory provides us with the 
ultimate justification for instruction: the aim of all instruction is 
to add knowledge and skills to long-term memory. If nothing has 
been added to long-term memory, nothing has been learned.

Working memory is the cognitive structure in which conscious 
processing occurs. We are only conscious of the information cur-
rently being processed in working memory and are more or less 

oblivious to the far larger amount of information stored in long-
term memory. When processing novel information, working 
memory is very limited in duration and capacity. We have known 
at least since the 1950s that almost all information stored in work-
ing memory is lost within 30 seconds25 if it is not rehearsed and 
that the capacity of working memory is limited to only a very small 
number of elements.26 That number is usually estimated at about 
seven, but may be as low as four, plus or minus one.27 Further-
more, when processing (rather than merely storing) information, 
it may be reasonable to conjecture that the number of items that 
can be processed may only be two or three, depending on the 
nature of the processing required.

For instruction, the interactions between working memory and 
long-term memory may be even more important than the pro-

cessing limitations.28 The limitations of working memory only 
apply to new, to-be-learned information (that has not yet been 
stored in long-term memory). When dealing with previously 
learned, organized information stored in long-term memory, 
these limitations disappear. Since information can be brought 
back from long-term memory to working memory as needed, the 
30-second limit of working memory becomes irrelevant. Similarly, 
there are no known limits to the amount of such information that 
can be brought into working memory from long-term memory. 

These two facts—that working memory is very limited when 
dealing with novel information, but that it is not limited when 
dealing with organized information stored in long-term mem-
ory—explain why partially or minimally guided instruction typi-
cally is ineffective for novices, but can be effective for experts. 
When given a problem to solve, novices’ only resource is their very 
constrained working memory. But experts have both their work-
ing memory and all the relevant knowledge and skill stored in 
long-term memory.

One of the best examples of an instructional approach that 
takes into account how our working and long-term memories 
interact is the “worked-example effect.” A worked example is just 
what it sounds like: a problem that has already been solved (or 
“worked out”) for which every step is fully explained and clearly 
shown; it constitutes the epitome of direct, explicit instruction.* 

many educators confuse “constructivism,” 
which is a theory of how one learns and 
sees the world, with a prescription for 
how to teach.

*For a short YouTube video of a worked example, go to http://bit.ly/xa0TYQ and see 
Shaun Errichiello, who teaches seventh-grade math at the Salk School of Science (M.S. 
225) in New York City, work through a word problem with fractions.
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The “worked-example effect” is the name given to the widely 
replicated finding that novice learners who try to learn by being 
required to solve problems perform worse on subsequent test 
problems, including transfer problems different from the ones 
seen previously, than comparable learners who learn by studying 
equivalent worked examples.

The worked-example effect was first demonstrated in the 
1980s.29 Researchers found that algebra students learned more by 
studying worked examples than by solving equivalent problems. 
Since those early demonstrations of the effect, it has been repli-
cated on numerous occasions using a large variety of learners 
studying an equally large variety of materials—from mathematics 
and science to English literature and world history.30 For novices, 
studying worked examples seems invariably superior to discover-
ing or constructing a solution to a problem.

Why does the worked-example effect occur? The limitations of 

working memory and the relations between working memory and 
long-term memory discussed earlier can explain it. Solving a 
problem requires searching for a solution, which must occur using 
our limited working memory. If the learner has no relevant con-
cepts or procedures in long-term memory, the only thing to do is 
blindly search for possible solution steps that bridge the gap 
between the problem and its solution. This process places a great 
burden on working-memory capacity because the problem solver 
has to continually hold and process the current problem state in 
working memory (e.g., Where am I right now in the problem-
solving process? How far have I come toward finding a solution?) 
along with the goal state (e.g., Where do I have to go? What is the 
solution?), the relations between the goal state and the problem 
state (e.g., Is this a good step toward solving the problem? Has 
what I’ve done helped me get nearer to where I need to go?), the 
solution steps that could further reduce the differences between 
the two states (e.g., What should the next step be? Will that step 
bring me closer to the solution? Is there another solution strategy 
I can use that might be better?), and any subgoals along the way. 
Thus, searching for a solution overburdens limited working 
memory and diverts working-memory resources away from stor-
ing information in long-term memory. As a consequence, novices 
can engage in problem-solving activities for extended periods and 
learn almost nothing.31

In contrast, studying a worked example* reduces the burden 
on working memory (because the solution only has to be com-

prehended, not discovered) and directs attention (i.e., directs 
working-memory resources) toward storing the essential relations 
between problem-solving moves in long-term memory. Students 
learn to recognize which moves are required for particular prob-
lems, which is the basis for developing knowledge and skill as a 
problem solver.33

It is important to note that this discussion of worked examples 
applies to novices—not experts. In fact, the worked-example 
effect first disappears and then reverses as the learners’ expertise 
increases. That is, for experts, solving a problem is more effective 
than studying a worked example. When learners are sufficiently 
experienced, studying a worked example is a redundant activity 
that places a greater burden on working memory than retrieving 
a known solution from long-term memory.34 This reversal in effec-
tiveness is not limited to worked examples; it’s true of many 

explicit, fully guided instructional approaches and is known as 
the “expertise reversal effect.”35 In general, the expertise reversal 
effect states that “instructional techniques that are highly effective 
with inexperienced learners can lose their effectiveness and even 
have negative consequences when used with more experienced 
learners.”36 This is why, from the very beginning of this article, we 
have emphasized that guidance is best for teaching novel informa-
tion and skills. This shows the wisdom of instructional techniques 
that begin with lots of guidance and then fade that guidance as 
students gain mastery. It also shows the wisdom of using minimal 
guidance techniques to reinforce or practice previously learned 
material.

Recommending partial or minimal guidance for novices 
was understandable back in the early 1960s, when the 
acclaimed psychologist Jerome Bruner37 proposed 
discovery learning as an instructional tool. At that time, 

researchers knew little about working memory, long-term mem-
ory, and how they interact. We now are in a quite different envi-
ronment; we know much more about the structures, functions, 
and characteristics of working memory and long-term memory, 

If the learner has no relevant concepts 
in long-term memory, the only thing  
to do is blindly search for solutions. 
Novices can engage in problem solving 
for extended periods and learn almost 
nothing.

*This assumes that the worked example is well designed. It is possible, if one is not 
careful, to structure a worked example in a manner that places a large burden on 
working memory. Indeed, it is possible to structure worked examples that impose as 
heavy a cognitive load as the problem-solving search required to learn via discovery.32
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the relations between them, and their consequences for learning, 
problem solving, and critical thinking. We also have a good deal 
more experimental evidence as to what constitutes effective 
instruction: controlled experiments almost uniformly indicate 
that when dealing with novel information, learners should be 
explicitly shown all relevant information, including what to do 
and how to do it. We wonder why many teacher educators who 
are committed to scholarship and research ignore the evidence 
and continue to encourage minimal guidance when they train 
new teachers.

After a half century of advocacy associated with instruction 
using minimal guidance, it appears that there is no body of 
sound research that supports using the technique with anyone 
other than the most expert students. Evidence from controlled, 
experimental (a.k.a. “gold standard”) studies almost uniformly 
supports full and explicit instructional guidance rather than 
partial or minimal guidance for novice to intermediate learners. 
These findings and their associated theories suggest teachers 
should provide their students with clear, explicit instruction 
rather than merely assisting students in attempting to discover 
knowledge themselves. ☐
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