
The most familiar of objects, numbers are nonetheless
surprisingly slippery, their sheer slipperiness interest-
ing evidence that certain intellectual tools may be

successfully used before they are successfully understood.
Numbers tend to sort themselves out by clans or systems,
with each new system arising as the result of a perceived in-
firmity in the one that precedes it.

The natural numbers 1, 2, 3, 4,…, start briskly at 1 and
then go on forever, although how we might explain what it
means for anything to go on forever without in turn using
the natural numbers is something of a mystery. In almost
every respect, they are, those numbers, simply given to us,
and they express a primitive and intimate part of our experi-
ence. Like so many gifts, they come covered with a cloud.
Addition makes perfect sense within the natural numbers; so,
too, multiplication. Any two natural numbers may be added,
any two multiplied. But subtraction and division are curi-
ously disabled operations. It is possible to subtract 5 from 10.
The result is 5. What of 10 from 5? No answer is forthcom-
ing from within the natural numbers. They start at 1.

The integers represent an expansion, a studied enlarge-
ment, of the system of natural numbers, one motivated by
obvious intellectual distress and one made possible by two
fantastic inventions. The distress, I have just described. And
those inventions? The first is the number 0, the creation of
some nameless but commanding Indian mathematician.

When 5 is taken away from 5, the result is nothing whatso-
ever, the apples on the table vanishing from the table, leav-
ing in their place a peculiar and somewhat perfumed ab-
sence. What was there? Five apples. What is there? Nothing,
Nada, Zip. It required an act of profound intellectual audac-
ity to assign a name and hence a symbol to all that nothing-
ness. Nothing, Nada, Zip, Zero, 0.

The negative numbers are the second of the great inven-
tions. These are numbers marked with a caul: –504, –323,
–32, –1. The result is a system that is centered at 0 and that
proceeds toward infinity in both directions:…, –5, –4, –3,
–2, –1, 0, 1, 2, 3, 4,…. Subtraction is now enabled. The re-
sult of taking 10 from 5 is –5. 

And yet if subtraction (along with addition and multipli-
cation) is enabled among the integers, division still provokes
a puzzle. Some divisions may be expressed entirely in inte-
gral terms—12 divided by 4, for example, which is simply 3.
But what of 12 divided by 7? In terms of the integers, it is
nothing whatsoever and so calls to mind those moments on
Star Trek when the transporter fails and causes the Silurian
ambassador to vanish.

It is thus that the rational numbers, or fractions, enter the
scene, numbers with a familiar doubled form: ²⁄₃, ⁵⁄₉, ¹⁷⁄₃₂.
The fractions express the relationship between the whole of
things that have parts and the parts that those things have.
There is that peach pie, the luscious whole, and there are
those golden dripping slices, parts of the whole, and so two-
thirds or five-ninths or seventeen-thirty-seconds of the thing
itself. With fractions in place, division among the integers
proceeds apace. Dividing 12 by 7 yields the exotic ¹²⁄₇, a
number that does not exist (and could not survive) amidst
the integers. But fractions play in addition a conspicuous
role in measurement and so achieve a usefulness that goes
beyond division.
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How Much and How Many
The natural numbers answer the oldest and most primi-
tive of questions—how many? It is with the appearance
of this question in human history that the world is sub-
jected for the first time to a form of conceptual segrega-
tion. To count is to classify, and to classify is to notice
and then separate, things falling within their boundaries
and boundaries serving to keep one thing distinct from
another.

The rational numbers, on the other hand, answer a
more modern and sophisticated question—how much?
Counting is an all or nothing affair. Either there are three
dishes on the table, three sniffling patients in the waiting
room, three aspects to the deity, or there are not. The ques-
tion how many? does not admit of refinement. But how
much? prompts a request for measurement, as in how much
does it weigh? In measurement some extensive quantity is
assessed by means of a scheme that may be made better
and better, with even the impassive and uncomplaining
bathroom scale admitting of refinement, pounds passing
over to half pounds and half pounds to quarter pounds,
the whole system capable of being forever refined were it
not for the practical difficulty of reading through the hot
haze of frustrated tears the awful news down there beneath
all that blubber. This refinement, which is an essential part
of measurement, plainly requires the rational numbers for
its expression and not merely the integers. I may count the
pounds to the nearest whole number; in order to measure
the fat ever more precisely, I need those fractions.

With fractions in place, the system of numbers in
which they are embedded undergoes a qualitative change.
The integers are discrete in the sense that between 1 and 2
there is absolutely nothing. There is not much more,
needless to say, between 2 and 3. Going from one integer
to another is like proceeding from rock to rock across an
inky void. The fractions fill up the spaces in the void,
with ³⁄₂, for example, standing solidly between 1 and 2.
There are now rocks between rocks—the void is vanish-
ing—and rocks between rocks and rocks, with ¹⁄₃ standing
between ¹⁄₄ and ¹⁄₂. The filling-in of fractions between
fractions is a process that goes on forever. That void has
vanished. The number system is now dense, and not dis-
crete, infinite in either direction (as the positive and nega-
tive integers go on and on) and infinite between the inte-
gers as well. In looking at the space between 1 and 2,
swarming now with pullulating fractions, the mathemati-
cians, or the reader, may for a moment have the unex-
pected sensation of peering into some sinister sinkhole—
some hidden source of creation.

The Black Blossoms of Geometry:
Inscribing Numbers on the Number Line
Geometry is a world within the world. The integers and the
fractions represent the numbers with which that world must
be coordinated. But geometry is one thing, arithmetic an-
other. Taken on their own, they remain alien, one to the
other. Analytic geometry represents a program in which
arithmetic comes vibrantly to life within geometry, and so

describes a process in which an otherwise severe world is
made to blossom.

The program of analytic geometry is to evoke the num-
bers from the stubby soil of a geometrical landscape; it be-
gins with a solitary line, something that lies in the imagina-
tion like a straight desert highway stretching from one blue
horizon to the other. The traveler drifting down that high-
way, it is worth remembering, requires only one landmark to
orient himself. Like the hero of innumerable westerns, he is
heading toward Dodge City, or like the villain of those same
westerns, away from Dodge City, Dodge City itself serving
as the solitary point on the otherwise empty and lonesome
stretch of road telling the cowpoke where he is going and
the villain where he has been.

What is good enough for the cowboy is good enough for
the mathematician. Looking at a given line, he picks a point
to serve as a starting spot. That point functions as an origin,
a source of things and a center of motion. But a point, it
must be remembered, is not a number; holding place with-
out size and arising whimsically whenever two straight lines
are crossed, it is a geometrical object, a kind of fathomless
atom out of which the line is ultimately created. Analytic ge-
ometry is a program to make this desert bloom; but if arith-
metic is to be found here it can only be as the result of a de-
liberate assignment of numbers to points, a pairing of items
that are incorrigibly distinct. The mathematician thus does
not discover a number at the origin: He invokes one. Look-
ing out over that linear landscape, the line bisected by a
point, he assigns the number 0 to the origin, if only to con-
vey the sense on the line already conveyed in the number
system itself, that at 0 things have a beginning (0, 1, 2, 3,
4,…) and at 0 they have an end (…, –4, –3, –2, –1, 0).

One number has been made to flower and break black
blossoms on the line; the rest of them may be made to fol-
low and crack the stony soil.

Having chosen an origin, the mathematician next
chooses some fixed distance on the line to represent
a unit distance. The choice of a unit is arbitrary.

The distance is fixed because it is a measure of distance from
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the origin. And it is a fixed distance because the mathemati-
cian is measuring spatial expanse. With a unit distance thus
in place, a second number makes an appearance on the line.
The point precisely one unit distance from the origin is as-
signed the number 1. The line has now been made to blos-
som twice.

The number 2 blossoms on the line at the point two units
from the origin, and 3 follows in turn. Every natural number
is represented in just the same way. The fractions on this
scheme play the role that they always play, ¹⁄₂, for example,
denoting the point midway between 0 and 1. There are no
surprises. Things are just as they seem. The scheme is simple.

If the positive integers and fractions indicate distance
from the origin in one direction, the negative integers and
fractions indicate distance from the origin in the other direc-
tion. It is here that the lucidity of a geometrical stage—its
high desert light—may first be appreciated.

The Number Line

This elegant little exercise complete, the numbers have
been inscribed on the geometric line, endowing the line
with a living arithmetic content and being endowed by
the line with a geometrical exoskeleton. Points on the line
have now been assigned a numerical magnitude, and
numbers a geometrical distance. It is possible to measure
the distance between points and possible again to see the
distance between numbers. Far from seeming strange, this
interpretation of arithmetic and geometry strikes a deep, a
resonant, chord of intuition suggesting that contrary to
the historical development of these subjects, arithmetic
and geometry are each aspects of a single, deeper disci-
pline in which form and number are seamlessly matched
and then merged.

The Unbearable Smoothness of Motion
And yet there is always a yet.

The geometrical line reflects the unbearable smoothness
of motion perfectly; between points, there are points, those
points falling in on themselves so that the line as a whole
forms a continuum, an ancient mystic image of things at the
margins of distinctness, a perfect expression of the passage
we make from one place to another or from one time to an-
other, the experience of continuity suggesting that at some
level there is only seamlessness.

Yet the numbers are pretty hard-edged characters; each
possesses a defiant sense of its own individuality, and none
of them seems inclined to do much swimming toward the
ocean of being. Or anything else. If points on the line find
their separate identities a burden, the numbers positively
revel in their individuality. This circumstance may provoke a
squeak of suspicion, a sinister hunch that the line and the
numbers inscribed upon it are in some way discordant. And
although these remarks are delivered by a shrug of intuition,

the shrug is backed up by an ancient argument.

The Ifs Accumulate
A theorem attributed to Pythagoras affirms that if a and b
are the sides of a right triangle and h its hypotenuse, then
a2 + b2 = h2. The theorem embodies a striking fact about
right triangles: whatever their particular configuration, this
simple numerical relationship will hold among their sides. If
a = 3 and b = 4, a2 + b2 = 25, and h must therefore be 5.

And so it is, the Pythagorean theorem embedding the
waywardness of the world in an incorruptible set of concep-
tual constraints.

But suppose now that a and b are 1. The triangle answer-
ing to the supposition appears unremarkable. Its legs are
each one unit in length. The thing seems somewhat squat.
But what of h amid all this ordinariness? Among other
things, h expresses the extent of a fixed and hopelessly pro-
saic distance in the real world. And if h is a distance in the
real world, it is also a distance on the number line, a fact
that may be seen by rotating the triangle so that its hy-
potenuse coincides with the axis of the number line itself.
Thus inscribed on the number line, the endpoint of the hy-
potenuse is at precisely h from the origin.

So? What then is h? A distance of what magnitude?
It would be intellectually repugnant to learn that al-

though h is some distance from here, it is a distance that
cannot be correlated with any number.

To say this is to evoke one of those absurdist dramas so
popular in the fifties. But it is nonetheless appropriate in the
case of h, the suspicions and surmises now collecting them-
selves into a flat and sullen statement: there is no way of
telling.

The overall argument is very simple, very compact, and
very powerful. The Pythagorean theorem says that a2 + b2 =
h2, and it says so for any right triangle. If a and b are 1 and
thus a2 + b2 = 2, h is then the number that when squared (or
multiplied by itself ) is 2. These trim and tidy inferential
steps suffice to take the reader to the very edge of doom. If
a2 + b2 = 2, h2 must be 2 and h itself �

__
2.

But no such number exists.
That square root of 2 is like the Yeti or the Loch Ness

monster, the snows of yesteryear, the dusky ghost of the
dusty window—it is not there, it cannot be found, it is not a
part of the furniture of this or any other world.

The discussion is now embedded in a tangle of concepts.
Just look at this crown of thorns. (continued)

a b

2
h = ?

h = ?

a

b

1 1

1 1

Positive

–2 2–1 10–¹⁄₂ ¹⁄₂

Negative
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The square root of 2? It doesn’t exist? You’re putting me
on, right?—this said with the tone of incredulity with
which on ordinary occasions we treat an old friend’s

announcement that he is about to depart for an ashram. The
thing is puzzling. It puzzled the Greeks, and it puzzled
mathematicians who came after the Greeks. It puzzled
mathematicians filing down the centuries, God-intoxicated
Hindu sages writing in the shadows of gorgeous temples,
bearded Arabic scholars fingering their caftans, profit-eyed
men of the Italian renaissance.

But there it is. The ancient proof is unassailable. 

Poor Fat Things
Sixteen has a square root in 4, and ¹⁄₄ a square root in ¹⁄₂,

but 2 has no square root whatsoever among the rational
numbers, although it would appear that 2.25 has a square
root in 1.5. Fretfulness? That is not quite the right word. An
ancient impediment to understanding has come shambling
out of the historical mists, dragging green slime behind it
and snorting wetly. Impediment? Not quite the right word ei-
ther. There are plenty of square roots beyond the square root
of 2 that cannot be expressed in terms of the rational num-
bers—the square root of 3, for example. Like plush that
under strong light reveals a series of alarming moth holes,
the familiar number system is filled with strange gaps, places
of reverberating emptiness. And the word for that is weird.

The square root of 2 forced the Greeks to the contempla-
tion of incommensurable magnitudes—distances on the line
that could not be correlated with any number. These are
unlovely objects, those numberless distances, if only because
like hairless dogs they exhibit their deficiencies so defiantly.
The discovery of incommensurable magnitudes provoked a
crisis among Greek mathematicians committed (as most
mathematicians are) to the supremacy of numbers.

The crisis they provoked, the Greeks never resolved. In
Eudoxus and in Euclid, incommensurable magnitudes make
an appearance as incommensurable magnitudes, strange
numberless objects. Ratios of such objects are taken and a
scheme of geometry created, but in the end, there the poor
fat things sit: obscure, implausible, and bizarre.

The great Hindu and Arabic mathematicians of the Mid-
dle Ages took quite another tack. Whatever incommensu-
rable magnitudes might be, they treated such things as if
they were really numbers—irrational numbers, the irrational
a nice inadvertent touch signifying the madness loitering
about the very notion—and learned many tricks by which
such numbers might be manipulated. In the 12th century,
for example, Bh

_
askara demonstrated correctly that �

__
3 +

�
___
12 = 3�

__
3. But neither Bh

_
askara nor anyone else ever made

clear what items such as �
__
3 were. The symbols resisted, as

symbols so often do, any attempt to invest them with mean-
ing. Sitting in their perfumed gardens, those thousand and
one Arabian mathematicians carried out their calculations
with a charming and insouciant assurance that all that gib-
berish actually made sense.

Not that anyone else did any better, the high medieval
gibberish of Arabic mathematics appearing in Italy, France,
and England as an inexpungably vital but irremediably vul-

gar weed. And the curious counterintuitive thing is that it
didn’t matter. The commonplace view of mathematics as a
discipline consecrated to the ideal of precision has very little
to do with mathematics as it is lived. Between 1500 and
1800, the great central stage of European thought is
crowded with babbling and arguing figures—Cardano,
Stifel, Pascal, Descartes, Wallis, Barrows, even Leibniz and
the sainted Newton—saying one thing but writing quite an-
other, agreeing in solemn convocation that irrational num-
bers are a fiction (almost a certain sign of bad faith, in math-
ematics or anything else), and then applying that fiction to
numerical problems and like Bh

_
askara miraculously getting

the answer right, the work involved in the creation of the
calculus a matter evidently capable of being conducted with-
out being clarified.

The straight line and the numbers themselves are some-
how hopelessly discordant, the sense of dislocation all the
more pressing and all the more poignant in virtue of the
conviction—one shared by almost any mathematician—that
the line should express the numbers and the numbers should
represent the line, and that both expression and representa-
tion should be perfect and complete.

The Doctor of Discovery
In his remarkable essay, Continuity and Irrational Numbers,
the 19th-century mathematician Richard Dedekind wrote
with a sense of dawning discovery that it was severability
that gave the line its essence, its past. Let us suppose,
Dedekind supposed, that at a point the geometrical line is in
imagination cut. The result of the cut just made is a division
of the line into two segments, A and B. Every point in A is
to the left of every point in B. Every point on the line deter-
mines one, and only one, cut.

It is best to think of Dedekind as a great diagnostician, a
doctor of discovery. The facts are in order; but the facts have
always been in order. The facts have been in plain sight for
more than two thousand years. Here they are, those facts.
Some distances on the line cannot be correlated with any
natural or rational number. And the numbers contain gaps,
places where there should be something but where there is
nothing instead. There is something about the line, some
kind of continuity, some special property, some thing or as-
pect, some feature or condition; but when it came to speci-
fying what that thing, aspect, feature, or condition was,
mathematicians were silent.

The line is in some sense richer than the numbers that are
used to represent it, and this is an old, an inconvenient fact;
but Dedekind’s diagnosis of this problem goes beyond a revis-
iting of such facts in order to display the long-hidden source
of the discrepancy between line and number. Every rational
number, he argued, produces a cut among the numbers; but
some cuts answer to no rational number and in this respect—
this alone, no other—the numbers and the line are different.
Dedekind’s calm but profound investigation succeeds as an
act of intellectual liberation because it connects a particular
fact—that some distances cannot be measured by any rational
number—with the much larger, the more general, fact that
some cuts cannot be made at any rational number.

40AMERICAN EDUCATOR FALL 2002



It is the strength of Dedekind’s diagnosis that it suggests
its own remedy. If the rational numbers are filled with gaps,
new numbers, Dedekind urged, are needed to make good
the deficiencies. Mathematicians before Dedekind had sim-
ply invoked the irrational numbers with a certain hearty
carelessness, trusting in their superb intuition to get things
right. In Dedekind’s diagnosis, new numbers arise as the re-
sult of an informed act of creation.

The axiom that achieves these aims is surpassingly spare.
“Whenever, then, we have to do with a cut A and B,”
Dedekind writes, “produced by no rational number, we cre-
ate a new, an irrational number.” These may seem desultory
words, but Dedekind is able to paint the portrait of this new
number precisely and so at least to supply the lineaments of
the desired miracle. It is to be a number in set A greater than
any other number in A; and thus a number less than any
number in set B. The axiom itself serves to compel such a
number into existence. Given any cut of the number line
and, therefore, any cut of the numbers into two camps A
and B, there exists, the axiom says—there must exist, the
mathematician adds—one and only one number in A larger
than any other number in A, the imperious there exists
bringing something new into the world and so allowing the
mathematician to share in the general mystery of creation.
In the case of rational cuts, the axiom ratifies what is evi-
dent: the rational cuts are made at the numbers. But where
before there was nothing more than an emptiness answering
to the square root of 2, a new number now appears, a Dark
Prince, an object utterly unlike any rational number, one
flushed from the shadows and full of brooding mystery.

Dedekind published the results of his research in 1872
and so within the memory of the very oldest widow of a
Civil War veteran, and I mention this in order to connect by
some living tissue this moment with that one. The calculus
had already been in existence for more than two centuries in
1872. If the calculus is much like a cathedral, its construc-
tion the work of centuries, it remained until the 19th cen-
tury a cathedral suspiciously suspended in midair, the thing
simply hanging there, with no one absolutely convinced that
one day that gorgeous and elaborate structure would not
come crashing down and fracture in a thousand pieces.
Dedekind’s axiom is logically among the fundamental affir-
mations of the calculus. With the axiom in place, the cathe-
dral has a foundation. An assumption has been evoked to
dispel a mystery.

Real World Rising
In the beginning, the natural numbers, 1, 2, 3, 4,....Then 0
and the negative numbers. Next, the rational numbers, or
fractions. And finally the irrational numbers. I have not said
what the irrational numbers are, only that the real number
system obeys Dedekind’s axiom. Like members of a goofy
lodge, the other numbers express their identities unselfcon-
sciously, but the square root of 2? It has come into existence
as the result of an assumption; it stands to the other num-
bers in a certain relationship; when multiplied by itself it
yields the number 2. But after all is said and done the thing
seems determined entirely by the relationships it entertains.

A rational number or fraction, it is worthwhile to recall,
enjoys a double identity, one that is on many occasions use-
ful, as double identities often are. The number ¹⁄₂, for exam-
ple, may be written in decimal notation as 0.5 and the num-
ber ¹⁵⁄₂₈ as 0.53571428571428. Now the square root of 2
may also be written in decimal notation, for a start as 1.414.
The notation serves to restore the irrational numbers to a
certain community of numbers, for, in form, 1.414 and
0.53571428571428 appear to be objects of roughly the
same kind. To the extent that decimal notation serves this
psychological purpose, no harm is done. But the decimal ex-
pansion of a rational number—the numbers after the deci-
mal point—is either finite, as in the case of 0.5, or doomed
to repeat itself after a period, and so appears among the
numbers as one of those tiresome ghosts returning every
Halloween to the same fireplace, where they may be found
rubbing their hands and looking mournful and making
clanking sounds. In the decimal expansion of ¹⁵⁄₂₈, the se-
quence 571428 occurs over and over again, clanking away.

The contrast to the irrational numbers is striking. The
decimal expansion of an irrational number never repeats it-
self. Instead, the expansion trails off into the far future, each
of its digits something of a surprise, the result of a unique
and infinitely long object with little by way of pattern or
plan to ease the understanding. The square root of 2 is
1.414, and beyond that 1.4142, and beyond that
1.414212552...; from what has gone before, there is no
telling what is to come. The digits expressing this number
are unpredictable, random, unique, solitary, infinite, and
unfathomable. They retain an element of unavoidable mys-
tery. Like the human soul, an irrational number is only
partly known, and however more is known of either there is
always infinitely more to know.

*   *   *

Whatever the ultimate identity of the irrational
numbers, what is known about them is of less
importance than what is known of the great sys-

tem in which they are embedded.
That system is severable. Dedekind’s axiom is in force,

flooding the numbers with light, flushing the irrationals
from the shadows. Addition, subtraction, multiplication,
and division, the immemorial operations of childhood, are
entirely enabled; thus enabled, they allow the irrational
numbers to function as numbers: �

__
3 + �

___
12 = 3�

__
3, because

the square root of 12 may be written as �
__
4

__
x3 and then as

2�
__
3, making three of those square roots in all.

The system is ordered. Any number if it is not equal to 0
is either greater than 0 or less than 0. It is a system in which
every number finds its place and there is a place for every
number.

And the system is complete. There are no gaps to be filled.
Any cut among the numbers falls like the stroke of an ax
upon a single number. Positive numbers have roots within
the system. The strange black nothingness that opened up
among the rational numbers is gone. Incommensurable
magnitudes are no longer incommensurable. The correspon-
dence between the geometric line and the real numbers is
perfect and unblemished. �
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